cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A223491 Largest Fermi-Dirac factor of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 4, 9, 5, 11, 4, 13, 7, 5, 16, 17, 9, 19, 5, 7, 11, 23, 4, 25, 13, 9, 7, 29, 5, 31, 16, 11, 17, 7, 9, 37, 19, 13, 5, 41, 7, 43, 11, 9, 23, 47, 16, 49, 25, 17, 13, 53, 9, 11, 7, 19, 29, 59, 5, 61, 31, 9, 16, 13, 11, 67, 17, 23, 7, 71, 9
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 20 2013

Keywords

Comments

Greatest Fermi-Dirac factor of n: Largest divisor of n of the form p^(2^k), for some prime p and k >= 0, with a(1) = 1. Thus for n > 1, the largest term of A050376 that divides n. - Antti Karttunen, Apr 13 2018

Crossrefs

Cf. A223490, A050376, A034699, A000040 (subsequence), A302776, A302785, A302789 (ordinal transform).
Cf. also A006530, A034699.

Programs

  • Haskell
    a223491 = last . a213925_row
    
  • Mathematica
    f[p_, e_] := p^(2^Floor[Log2[e]]); a[n_] := Max @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 26 2020 *)
  • PARI
    ispow2(n) = (n && !bitand(n,n-1));
    A223491(n) = if(1==n,n,fordiv(n, d, if(ispow2(isprimepower(n/d)), return(n/d)))); \\ Antti Karttunen, Apr 13 2018

Formula

a(n) = A213925(n,A064547(n)).
A209229(A100995(a(n))) = 1; A010055(a(n)) = 1.
From Antti Karttunen, Apr 13 2018: (Start)
a(1) = 1; for n > 1, a(n) = A050376(A302785(n)).
a(n) = n/A302776(n).
(End)

A302786 Index of the smallest Fermi-Dirac factor of n, a(1) = 0 by convention: a(n) = A302778(A223490(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 1, 5, 1, 6, 1, 7, 2, 8, 1, 2, 9, 10, 1, 11, 3, 2, 1, 12, 1, 13, 1, 2, 3, 14, 1, 15, 1, 2, 1, 4, 3, 16, 1, 2, 1, 17, 1, 18, 3, 4, 1, 19, 2, 20, 1, 2, 3, 21, 1, 4, 1, 2, 1, 22, 2, 23, 1, 5, 3, 4, 1, 24, 3, 2, 1, 25, 1, 26, 1, 2, 3, 5, 1, 27, 4, 28, 1, 29, 2, 4, 1, 2, 1, 30, 1, 5, 3, 2, 1, 4, 1, 31, 1, 6, 3, 32, 1, 33, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Apr 13 2018

Keywords

Crossrefs

A left inverse of A050376.
Cf. A001511, A052331, A223490, A302778, A302785, A302787, A302788 (ordinal transform), A302789.
Cf. also A055396.

Programs

  • Mathematica
    nn = 105; t = {}; k = 1;
    While[lim = nn^(1/k); lim > 2,
         t = Join[t, Prime[Range[PrimePi[lim]]]^k]; k = 2 k];
    A050376 = Union[t];
    A223490[n_] := Table[{p, e} = pe; p^(2^IntegerExponent[e, 2]), {pe, FactorInteger[n]}] // Min;
    a[n_] := If[n == 1, 0, FirstPosition[A050376, A223490[n]][[1]]];
    Array[a, nn] (* Jean-François Alcover, Jan 08 2022, after T. D. Noe in A050376 *)
  • PARI
    up_to = 65537;
    v050376 = vector(up_to);
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to,break));
    A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
    A001511(n) = 1+valuation(n,2);
    A302786(n) = if(1==n,0,A001511(A052331(n)));

Formula

a(n) = A302778(A223490(n)).
a(1) = 0; for n > 1, a(n) = A001511(A052331(n)).
For n >= 1, a(A050376(n)) = n.
For n > 1, A050376(a(n)) = A223490(n).

A302785 Index of the largest Fermi-Dirac factor of n, a(1) = 0 by convention: a(n) = A302778(A223491(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 2, 5, 3, 6, 4, 7, 3, 8, 5, 4, 9, 10, 6, 11, 4, 5, 7, 12, 3, 13, 8, 6, 5, 14, 4, 15, 9, 7, 10, 5, 6, 16, 11, 8, 4, 17, 5, 18, 7, 6, 12, 19, 9, 20, 13, 10, 8, 21, 6, 7, 5, 11, 14, 22, 4, 23, 15, 6, 9, 8, 7, 24, 10, 12, 5, 25, 6, 26, 16, 13, 11, 7, 8, 27, 9, 28, 17, 29, 5, 10, 18, 14, 7, 30, 6, 8, 12, 15, 19, 11, 9, 31, 20, 7, 13, 32, 10, 33, 8, 5
Offset: 1

Views

Author

Antti Karttunen, Apr 13 2018

Keywords

Crossrefs

A left inverse of A050376.
Cf. A052331, A223491, A240535, A302778, A302786, A302788, A302789 (ordinal transform).
Cf. also A061395.

Programs

  • PARI
    up_to = 65537;
    v050376 = vector(up_to);
    A050376(n) = v050376[n];
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to,break));
    A302785(n) = if(1==n,0, my(e); fordiv(n, d, if(ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(e, return(e), print("v050376 too short!"); return(1/0)))));

Formula

a(n) = A302778(A223491(n)).
For n > 1, A050376(a(n)) = A223491(n).
For n >= 1, a(A050376(n)) = n.

A302788 Number of times the smallest Fermi-Dirac factor of n is the smallest Fermi-Dirac factor for numbers <= n; a(1) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 3, 1, 1, 6, 1, 2, 4, 7, 1, 8, 1, 9, 5, 3, 1, 10, 1, 11, 6, 12, 2, 4, 1, 13, 7, 14, 1, 15, 1, 5, 3, 16, 1, 8, 1, 17, 9, 6, 1, 18, 4, 19, 10, 20, 1, 11, 1, 21, 2, 7, 5, 22, 1, 8, 12, 23, 1, 24, 1, 25, 13, 9, 3, 26, 1, 6, 1, 27, 1, 14, 7, 28, 15, 29, 1, 30, 4, 10, 16, 31, 8, 32, 1, 33, 2, 11, 1, 34, 1, 35, 17
Offset: 1

Views

Author

Antti Karttunen, Apr 13 2018

Keywords

Comments

Ordinal transform of A223490, or equally, of A302786.

Crossrefs

Cf. A084400 (gives the positions of 1's).
Cf. also A078898.

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    v050376 = vector(up_to);
    A050376(n) = v050376[n];
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to,break));
    A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
    A001511(n) = 1+valuation(n,2);
    A302786(n) = if(1==n, 0, A001511(A052331(n)));
    v302788 = ordinal_transform(vector(up_to,n,A302786(n)));
    A302788(n) = v302788[n];

A302787 a(1) = 0; for n > 1, a(n) = A000265(A052331(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 5, 1, 9, 1, 3, 1, 17, 5, 1, 1, 33, 1, 3, 9, 65, 1, 7, 1, 129, 17, 5, 1, 11, 1, 257, 33, 513, 3, 9, 1, 1025, 65, 13, 1, 19, 1, 17, 5, 2049, 1, 129, 1, 4097, 257, 33, 1, 35, 9, 21, 513, 8193, 1, 7, 1, 16385, 3, 65, 17, 67, 1, 129, 1025, 25, 1, 37, 1, 32769, 2049, 257, 5, 131, 1, 33, 1, 65537, 1, 11, 65, 131073, 4097, 69, 1, 41, 9
Offset: 1

Views

Author

Antti Karttunen, Apr 13 2018

Keywords

Comments

After n=1, differs from A240535 (which gives the same terms, but with mirrored binary expansion) for the first time at n=30, where a(30) = 11, while A240535(30) = 13. Note how 11 = "1011" and 13 = "1101" in binary.
For all i, j: a(i) = a(j) => A302791(i) = A302791(j).

Crossrefs

Programs

  • PARI
    up_to = 8192;
    v050376 = vector(up_to);
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to,break));
    A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
    A000265(n) = (n/2^valuation(n, 2));
    A302787(n) = if(1==n,0,A000265(A052331(n)));

Formula

a(1) = 0; for n > 1, a(n) = A000265(A052331(n)).
For n > 1, a(n) = A030101(A240535(n)).
For n >= 1, A069010(a(n)) = A302790(n).

A303759 Number of times the largest prime power factor of n (A034699) is largest prime power factor for numbers <= n; a(1) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 4, 1, 5, 1, 1, 3, 2, 5, 3, 1, 2, 3, 3, 1, 6, 1, 4, 4, 2, 1, 2, 1, 2, 3, 4, 1, 2, 5, 4, 3, 2, 1, 6, 1, 2, 5, 1, 5, 6, 1, 4, 3, 7, 1, 6, 1, 2, 3, 4, 7, 6, 1, 3, 1, 2, 1, 8, 5, 2, 3, 8, 1, 7, 7, 4, 3, 2, 5, 2, 1, 2, 9, 4, 1, 6, 1, 8, 9
Offset: 1

Views

Author

Antti Karttunen, Apr 30 2018

Keywords

Comments

Ordinal transform of A034699.

Crossrefs

Cf. A000961 (positions of ones), A034699.
Cf. also A078899, A284600, A302789.

Programs

  • Maple
    b:= proc() 0 end:
    a:= proc(n) option remember; local t;
          t:= max(1, seq(i[1]^i[2], i=ifactors(n)[2]));
          b(t):= b(t)+1
        end:
    seq(a(n), n=1..120);  # Alois P. Heinz, Apr 30 2018
  • Mathematica
    f[n_] := Max[Power @@@ FactorInteger[n]];
    b[_] = 0;
    a[n_] := With[{t = f[n]}, b[t] = b[t]+1];
    Array[a, 105] (* Jean-François Alcover, Jan 03 2022 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A034699(n) = if(1==n,n,fordiv(n, d, if(isprimepower(n/d), return(n/d))));
    v303759 = ordinal_transform(vector(up_to,n,A034699(n)));
    A303759(n) = v303759[n];
Showing 1-6 of 6 results.