cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A052331 Inverse of A052330; A binary encoding of Fermi-Dirac factorization of n, shown in decimal.

Original entry on oeis.org

0, 1, 2, 4, 8, 3, 16, 5, 32, 9, 64, 6, 128, 17, 10, 256, 512, 33, 1024, 12, 18, 65, 2048, 7, 4096, 129, 34, 20, 8192, 11, 16384, 257, 66, 513, 24, 36, 32768, 1025, 130, 13, 65536, 19, 131072, 68, 40, 2049, 262144, 258, 524288, 4097, 514, 132, 1048576, 35
Offset: 1

Views

Author

Christian G. Bower, Dec 15 1999

Keywords

Comments

Every number can be represented uniquely as a product of numbers of the form p^(2^k), sequence A050376. This sequence is a binary representation of this factorization, with a(p^(2^k)) = 2^(i-1), where i is the index (A302778) of p^(2^k) in A050376. Additive with a(p^e) = sum a(p^(2^e_k)) where e = sum(2^e_k) is the binary representation of e and a(p^(2^k)) is as described above. - Franklin T. Adams-Watters, Oct 25 2005 - Index offset corrected by Antti Karttunen, Apr 17 2018

Examples

			n = 84 has Fermi-Dirac factorization A050376(5) * A050376(3) * A050376(2) = 7*4*3. Thus a(84) = 2^(5-1) + 2^(3-1) + 2^(2-1) = 16 + 4 + 2 = 22 ("10110" in binary = A182979(84)). - _Antti Karttunen_, Apr 17 2018
		

Crossrefs

Cf. A182979 (same sequence shown in binary).
One less than A064358.
Cf. also A156552.

Programs

  • PARI
    A052331=a(n)={for(i=1,#n=factor(n)~,n[2,i]>1||next; m=binary(n[2,i]); n=concat(n,Mat(vector(#m-1,j,[n[1,i]^2^(#m-j),m[j]]~)));n[2,i]%=2); n||return(0); m=vecsort(n[1,]); forprime(p=1,m[#m],my(j=0);while(p^2^j>1} \\ M. F. Hasler, Apr 08 2015
    
  • PARI
    up_to_e = 8192;
    v050376 = vector(up_to_e);
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to_e,break));
    A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); }; \\ Antti Karttunen, Apr 12 2018

Formula

a(1)=0; a(n*A050376(k)) = a(n) + 2^k for a(n) < 2^k, k=0, 1, ... - Thomas Ordowski, Mar 23 2005
From Antti Karttunen, Apr 13 2018: (Start)
a(1) = 0; for n > 1, a(n) = A000079(A302785(n)-1) + a(A302776(n)).
For n > 1, a(n) = A000079(A302786(n)-1) * A302787(n).
a(n) = A064358(n)-1.
A000120(a(n)) = A064547(n).
A069010(a(n)) = A302790(n).
(End)

A223490 Smallest Fermi-Dirac factor of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 2, 7, 2, 9, 2, 11, 3, 13, 2, 3, 16, 17, 2, 19, 4, 3, 2, 23, 2, 25, 2, 3, 4, 29, 2, 31, 2, 3, 2, 5, 4, 37, 2, 3, 2, 41, 2, 43, 4, 5, 2, 47, 3, 49, 2, 3, 4, 53, 2, 5, 2, 3, 2, 59, 3, 61, 2, 7, 4, 5, 2, 67, 4, 3, 2, 71, 2, 73, 2, 3, 4, 7, 2, 79
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 20 2013

Keywords

Comments

Note that this is not equal to the smallest Fermi-Dirac prime (A050376) dividing n, which is always A020639(n). - Antti Karttunen, Apr 15 2018

Crossrefs

Cf. A223491, A050376, A028233, A000040 (subsequence).
Cf. also A020639.

Programs

  • Haskell
    a223490 = head . a213925_row
    
  • Mathematica
    f[p_, e_] := p^(2^IntegerExponent[e, 2]); a[n_] := Min @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 26 2020 *)
  • PARI
    up_to = 65537;
    v050376 = vector(up_to);
    A050376(n) = v050376[n];
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to,break));
    A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
    A001511(n) = 1+valuation(n,2);
    A223490(n) = if(1==n,n,A050376(A001511(A052331(n)))); \\ Antti Karttunen, Apr 15 2018

Formula

a(n) = A213925(n,1).
A209229(A100995(a(n))) = 1; A010055(a(n)) = 1.
From Antti Karttunen, Apr 15 2018: (Start)
a(1) = 1; and for n > 1, a(n) = A050376(A302786(n)).
a(n) = n / A302792(n).
a(n) = A302023(A020639(A302024(n))).
(End)

A302778 Number of "Fermi-Dirac primes" (A050376) <= n.

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 8, 9, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 22, 22, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 25, 25, 26, 26, 26, 26, 26, 26, 27, 27, 28, 28, 29, 29, 29, 29, 29, 29, 30
Offset: 1

Views

Author

Antti Karttunen, Apr 16 2018

Keywords

Crossrefs

Partial sums of A302777. A left inverse of A050376.
Differs from A203967 for the first time at n=64, where a(64) = 23, while A203967(64) = 24.
Cf. also A000720, A025528.

Programs

  • Mathematica
    s[n_] := Boole[n > 1 && Length[(f = FactorInteger[n])] == 1 && (e = f[[;; , 2]]) == 2^IntegerExponent[e, 2]]; Accumulate @ Array[s, 100] (* Amiram Eldar, Nov 27 2020 *)
  • PARI
    A209229(n) = (n && !bitand(n,n-1));
    A302777(n) = A209229(isprimepower(n));
    s=0; for(n=1,105,s+=A302777(n); print1(s,", "));
    
  • Python
    from sympy import primepi, integer_nthroot
    def A302778(n): return sum(primepi(integer_nthroot(n,1<Chai Wah Wu, Feb 18-19 2025

Formula

a(1) = 0; for n > 1, a(n) = A302777(n) + a(n-1).
For all n >= 1, a(A050376(n)) = n.

A302785 Index of the largest Fermi-Dirac factor of n, a(1) = 0 by convention: a(n) = A302778(A223491(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 2, 5, 3, 6, 4, 7, 3, 8, 5, 4, 9, 10, 6, 11, 4, 5, 7, 12, 3, 13, 8, 6, 5, 14, 4, 15, 9, 7, 10, 5, 6, 16, 11, 8, 4, 17, 5, 18, 7, 6, 12, 19, 9, 20, 13, 10, 8, 21, 6, 7, 5, 11, 14, 22, 4, 23, 15, 6, 9, 8, 7, 24, 10, 12, 5, 25, 6, 26, 16, 13, 11, 7, 8, 27, 9, 28, 17, 29, 5, 10, 18, 14, 7, 30, 6, 8, 12, 15, 19, 11, 9, 31, 20, 7, 13, 32, 10, 33, 8, 5
Offset: 1

Views

Author

Antti Karttunen, Apr 13 2018

Keywords

Crossrefs

A left inverse of A050376.
Cf. A052331, A223491, A240535, A302778, A302786, A302788, A302789 (ordinal transform).
Cf. also A061395.

Programs

  • PARI
    up_to = 65537;
    v050376 = vector(up_to);
    A050376(n) = v050376[n];
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to,break));
    A302785(n) = if(1==n,0, my(e); fordiv(n, d, if(ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(e, return(e), print("v050376 too short!"); return(1/0)))));

Formula

a(n) = A302778(A223491(n)).
For n > 1, A050376(a(n)) = A223491(n).
For n >= 1, a(A050376(n)) = n.

A302788 Number of times the smallest Fermi-Dirac factor of n is the smallest Fermi-Dirac factor for numbers <= n; a(1) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 3, 1, 1, 6, 1, 2, 4, 7, 1, 8, 1, 9, 5, 3, 1, 10, 1, 11, 6, 12, 2, 4, 1, 13, 7, 14, 1, 15, 1, 5, 3, 16, 1, 8, 1, 17, 9, 6, 1, 18, 4, 19, 10, 20, 1, 11, 1, 21, 2, 7, 5, 22, 1, 8, 12, 23, 1, 24, 1, 25, 13, 9, 3, 26, 1, 6, 1, 27, 1, 14, 7, 28, 15, 29, 1, 30, 4, 10, 16, 31, 8, 32, 1, 33, 2, 11, 1, 34, 1, 35, 17
Offset: 1

Views

Author

Antti Karttunen, Apr 13 2018

Keywords

Comments

Ordinal transform of A223490, or equally, of A302786.

Crossrefs

Cf. A084400 (gives the positions of 1's).
Cf. also A078898.

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    v050376 = vector(up_to);
    A050376(n) = v050376[n];
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to,break));
    A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
    A001511(n) = 1+valuation(n,2);
    A302786(n) = if(1==n, 0, A001511(A052331(n)));
    v302788 = ordinal_transform(vector(up_to,n,A302786(n)));
    A302788(n) = v302788[n];

A302787 a(1) = 0; for n > 1, a(n) = A000265(A052331(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 5, 1, 9, 1, 3, 1, 17, 5, 1, 1, 33, 1, 3, 9, 65, 1, 7, 1, 129, 17, 5, 1, 11, 1, 257, 33, 513, 3, 9, 1, 1025, 65, 13, 1, 19, 1, 17, 5, 2049, 1, 129, 1, 4097, 257, 33, 1, 35, 9, 21, 513, 8193, 1, 7, 1, 16385, 3, 65, 17, 67, 1, 129, 1025, 25, 1, 37, 1, 32769, 2049, 257, 5, 131, 1, 33, 1, 65537, 1, 11, 65, 131073, 4097, 69, 1, 41, 9
Offset: 1

Views

Author

Antti Karttunen, Apr 13 2018

Keywords

Comments

After n=1, differs from A240535 (which gives the same terms, but with mirrored binary expansion) for the first time at n=30, where a(30) = 11, while A240535(30) = 13. Note how 11 = "1011" and 13 = "1101" in binary.
For all i, j: a(i) = a(j) => A302791(i) = A302791(j).

Crossrefs

Programs

  • PARI
    up_to = 8192;
    v050376 = vector(up_to);
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to,break));
    A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
    A000265(n) = (n/2^valuation(n, 2));
    A302787(n) = if(1==n,0,A000265(A052331(n)));

Formula

a(1) = 0; for n > 1, a(n) = A000265(A052331(n)).
For n > 1, a(n) = A030101(A240535(n)).
For n >= 1, A069010(a(n)) = A302790(n).

A305437 Running index for the lexicographically least irreducible factor when (0,1)-polynomial obtained from the binary expansion of n is factored over Q.

Original entry on oeis.org

1, 2, 3, 2, 4, 2, 5, 2, 3, 2, 6, 2, 7, 2, 3, 2, 8, 2, 9, 2, 10, 2, 11, 2, 12, 2, 3, 2, 13, 2, 14, 2, 3, 2, 5, 2, 15, 2, 3, 2, 16, 2, 17, 2, 3, 2, 18, 2, 5, 2, 3, 2, 19, 2, 20, 2, 3, 2, 21, 2, 22, 2, 3, 2, 4, 2, 23, 2, 24, 2, 25, 2, 26, 2, 3, 2, 27, 2, 28, 2, 29, 2, 30, 2, 4, 2, 31, 2, 32, 2, 33, 2, 10, 2, 4, 2, 34, 2, 3, 2, 35, 2, 36, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2018

Keywords

Examples

			Numbers 1 .. 6 encode the following (0,1)-polynomials by their binary representation:
  1 -> 1       [Empty factorization]
  2 -> x       [Irreducible, the only and thus also the least factor is x]
  3 -> x + 1   [Irreducible, the least factor is (x+1)]
  4 -> x^2      = (x)(x)   [The least factor (x) occurred already for the first time at n=2, thus a(4) = 2.]
  5 -> x^2 + 1 [Irreducible, the least factor is (x^2 + 1)]
  6 -> x^2 + x  = (x)(x+1) [The least factor (x) occurred already at n=2, thus a(6) = 2.]
Binary representation of 7 is "111", encoding (0,1)-polynomial x^2 + x + 1, which is irreducible over Q, so it is the first time that polynomial occurs as a "smallest" (lexicographically least) irreducible factor, while before it, already four different kinds of "smallest" factors have occurred, thus a(7) = 5.
The second time the same factor occurs as the smallest one is for n=35, whose binary representation "100011" encodes polynomial x^5 + x + 1 = (x^2 + x + 1)(x^3 - x^2 + 1) , thus a(35) = 5 also.
The third time the same factor occurs as the smallest one is for n=49, whose binary representation "110001" encodes polynomial x^5 + x^4 + 1 = (x^2 + x + 1)(x^3 - x + 1), thus a(49) = 5 also.
		

Crossrefs

Cf. A305438 (ordinal transform).
Cf. also A055396, A302786.

Programs

  • PARI
    allocatemem(2^30);
    default(parisizemax,2^31);
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    pollexcmp(a,b) = { my(ad = poldegree(a), bd = poldegree(b),e); if(ad != bd, return(sign(ad-bd))); for(i=0,ad,e = polcoeff(a,ad-i) - polcoeff(b,ad-i); if(0!=e, return(sign(e)))); (0); };
    lexleastpolfactor(n) = if(1==n,0,my(fs = factor(Pol(binary(n)))[,1]~); vecsort(fs,pollexcmp)[1]);
    v305437 = rgs_transform(vector(up_to,n,lexleastpolfactor(n)));
    A305437(n) = v305437[n];
Showing 1-7 of 7 results.