cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302830 Expansion of (1/(1 - x))*Product_{k>=1} 1/(1 - k*x^k).

Original entry on oeis.org

1, 2, 5, 11, 25, 50, 106, 203, 401, 755, 1427, 2597, 4804, 8566, 15352, 27027, 47551, 82187, 142445, 243025, 414919, 700739, 1181236, 1972552, 3293898, 5450728, 9008081, 14791741, 24244399, 39494615, 64266141, 103979929, 167991853, 270190879, 433773933, 693518984
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 13 2018

Keywords

Comments

Partial sums of A006906.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1)+add(b(n-i*j, i-1)*(i^j), j=1..n/i)))
        end:
    a:= proc(n) option remember; `if`(n<0, 0, a(n-1)+b(n$2)) end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Apr 13 2018
  • Mathematica
    nmax = 35; CoefficientList[Series[1/(1 - x) Product[1/(1 - k x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 35; CoefficientList[Series[1/(1 - x) Exp[Sum[Sum[k^j x^(j k)/j, {k, 1, nmax}], {j, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: (1/(1 - x))*exp(Sum_{j>=1} Sum_{k>=1} k^j*x^(j*k)/j).
From Vaclav Kotesovec, Apr 14 2018: (Start)
a(n) ~ c * 3^(n/3), where
c = 319343.48587983201292657132469068725642363369445... if mod(n,3)=0
c = 319343.34569378454521307030620964478962032866022... if mod(n,3)=1
c = 319343.21458897980925594955657564398036486423380... if mod(n,3)=2
(End)