cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302846 Interleave the Gray-coded X and Y-coordinates of 2-dimensional Hilbert's curve in alternate bit-positions: a(n) = A000695(A003188(A059253(n))) + 2*A000695(A003188(A059252(n))).

Original entry on oeis.org

0, 1, 3, 2, 10, 8, 9, 11, 15, 13, 12, 14, 6, 7, 5, 4, 20, 22, 23, 21, 17, 16, 18, 19, 27, 26, 24, 25, 29, 31, 30, 28, 60, 62, 63, 61, 57, 56, 58, 59, 51, 50, 48, 49, 53, 55, 54, 52, 36, 37, 39, 38, 46, 44, 45, 47, 43, 41, 40, 42, 34, 35, 33, 32, 160, 162, 163, 161, 165, 164, 166, 167, 175, 174, 172, 173, 169, 171, 170, 168, 136
Offset: 0

Views

Author

Antti Karttunen, Apr 14 2018

Keywords

Comments

Like in binary Gray code A003188, also in this permutation the binary expansions of a(n) and a(n+1) differ always by just a single bit-position, that is, A000120(A003987(a(n),a(n+1))) = 1 for all n >= 0. Here A003987 computes bitwise-XOR of its two arguments.
When composed with A052330 this gives A302781.

Crossrefs

Cf. A302845 (inverse permutation).
Cf. also A003188, A163252, A300838 for other permutations satisfying the same condition.

Programs

  • PARI
    A064706(n) = bitxor(n, n>>2);
    A057300(n) = { my(t=1,s=0); while(n>0, if(1==(n%4),n++,if(2==(n%4),n--)); s += (n%4)*t; n >>= 2; t <<= 2); (s); };
    A163356(n) = if(!n,n,my(i = (#binary(n)-1)\2, f = 4^i, d = (n\f)%4, r = (n%f)); (((((2+(i%2))^d)%5)-1)*f) + if(3==d,f-1-A163356(r),A057300(A163356(r))));
    A302846(n) = A064706(A163356(n));

Formula

a(n) = A064706(A163356(n)) = A003188(A302844(n)).