cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A302848 Permutation of natural numbers: a(1) = 1; for n > 1, a(n) = 1+A064989(A003961(n)-2).

Original entry on oeis.org

1, 2, 3, 6, 4, 12, 5, 10, 20, 18, 8, 42, 7, 30, 15, 74, 14, 72, 11, 60, 48, 32, 9, 86, 44, 26, 75, 90, 24, 102, 16, 240, 21, 22, 19, 212, 23, 62, 80, 92, 38, 158, 13, 58, 168, 40, 27, 320, 66, 70, 59, 150, 35, 368, 84, 160, 110, 56, 54, 312, 34, 108, 111, 720, 45, 192, 39, 122, 78, 228, 68, 662, 36, 50, 33, 112, 87, 134, 17, 328, 416, 114, 47, 300, 128
Offset: 1

Views

Author

Antti Karttunen, Apr 26 2018

Keywords

Crossrefs

Cf. A302847 (inverse).

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A302848(n) = if(1==n,n,1+A064989(A003961(n)-2));

Formula

a(1) = 1; for n > 1, a(n) = 1+A064989(A003961(n)-2).
a(1) = 1; for n > 1, a(n) = 1+A064216(A048673(n)-1).

A302849 Permutation of natural numbers: a(1) = 1, a(2) = 2; for n > 2, a(n) = A064989(4+A003961(n-2)).

Original entry on oeis.org

1, 2, 3, 5, 4, 11, 7, 17, 6, 29, 23, 9, 13, 25, 10, 31, 22, 39, 19, 73, 8, 61, 53, 41, 14, 137, 47, 21, 82, 101, 15, 107, 37, 187, 38, 59, 16, 227, 12, 71, 83, 191, 43, 121, 26, 49, 173, 55, 34, 401, 27, 149, 28, 151, 20, 373, 51, 205, 65, 89, 33, 161, 67, 57, 116, 727, 74, 197, 18, 45, 139, 129, 35, 445, 79, 113, 158, 199, 50, 155, 46, 569, 403, 85, 58
Offset: 1

Views

Author

Antti Karttunen, Apr 26 2018

Keywords

Crossrefs

Cf. A302850 (inverse).

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A302849(n) = if(n<=2,n,A064989(4+A003961(n-2)));

Formula

a(1) = 1, a(2) = 2; for n > 2, a(n) = A064989(4+A003961(n-2)).

A354964 a(1) = 1, a(2) = 2, a(3) = 3; for n > 3, a(n) is the smallest new number such that the sum of any four successive terms is prime.

Original entry on oeis.org

1, 2, 3, 5, 7, 4, 13, 17, 9, 8, 19, 11, 15, 14, 21, 23, 25, 10, 31, 35, 27, 16, 29, 37, 45, 20, 47, 39, 33, 12, 43, 49, 53, 6, 41, 51, 59, 22, 61, 55, 73, 34, 65, 57, 67, 38, 71, 63, 69, 24, 77, 81, 75, 18, 83, 87, 89, 48, 93, 101, 95, 28
Offset: 1

Views

Author

Zak Seidov, Jun 13 2022

Keywords

Crossrefs

See A055265 and A076990 for similar sequences.

Programs

  • Mathematica
    s = {1, 2, 3}; Do[a = s[[-1]] + s[[-2]] + s[[-3]]; n = 4; While[MemberQ[s, n] || ! PrimeQ[a + n], n++]; AppendTo[s, n], {120}]; s
  • PARI
    { s = 0; for (n=1, #a = vector(62), if (n<=3, a[n]=n, for (v=1, oo, if (!bittest(s,v) && isprime(v+a[n-1]+a[n-2]+a[n-3]), a[n]=v; break))); print1 (a[n]", "); s+=2^a[n]) } \\ Rémy Sigrist, Jul 03 2022
Showing 1-3 of 3 results.