cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A335542 Numbers with a record number of deficient divisors.

Original entry on oeis.org

1, 2, 4, 8, 16, 30, 60, 90, 150, 210, 315, 630, 990, 1575, 1890, 2310, 3465, 4620, 6930, 11550, 13860, 17325, 20790, 30030, 39270, 45045, 60060, 78540, 90090, 117810, 131670, 180180, 196350, 219450, 225225, 255255, 270270, 353430, 395010, 450450, 510510, 746130
Offset: 1

Views

Author

Amiram Eldar, Jun 13 2020

Keywords

Comments

The corresponding numbers of deficient divisors are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 16, 17, 18, 22, ...

Examples

			2 is in the sequence since it is the least number with 2 deficient divisors, 1 and 2. The next number with more than 2 deficient divisors is 4, which has 3 deficient divisors, 1, 2, and 4.
		

Crossrefs

Programs

Formula

Numbers m such that A080226(m) > A080226(k) for all k < m.

A302935 Unitary highly composite deficient numbers: unitary deficient numbers k whose number of unitary divisors ud(k) > ud(m) for all unitary deficient numbers m < k.

Original entry on oeis.org

1, 2, 10, 84, 1155, 25740, 471240, 14549535, 535422888
Offset: 1

Views

Author

Amiram Eldar, Apr 16 2018

Keywords

Comments

The record numbers of unitary divisors are 1, 2, 4, 8, 16, 32, 64, 128, 256, ...
The unitary version of A302934.

Crossrefs

Programs

  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; udiv[n_] := 2^PrimeNu[n]; dm = 0; Do[sig = usigma[n]; If[sig >= 2 n, Continue[]]; d = udiv[n]; If[d > dm, Print[n]; dm = d], {n, 1, 1000000000}]
  • PARI
    nbud(n) = 1< maxd), print1(n, ", "); maxd = nbud(n);););} \\ Michel Marcus, Apr 17 2018

A302936 Bi-unitary highly composite deficient numbers: bi-unitary deficient numbers k whose number of bi-unitary divisors bd(k) > bd(m) for all bi-unitary deficient numbers m < k.

Original entry on oeis.org

1, 2, 8, 32, 84, 512, 972, 1155, 13365, 25740, 318087, 612612, 11223927, 14549535, 440374077, 746503065, 19013596875
Offset: 1

Views

Author

Amiram Eldar, Apr 16 2018

Keywords

Comments

The record numbers of bi-unitary divisors are 1, 2, 4, 6, 8, 10, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, ...
The bi-unitary version of A302934.

Crossrefs

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bdivnum[n_] := DivisorSum[n, 1 &, Last@Intersection[f@#, f[n/#]] == 1 &]; bsigma[m_] := DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; dm = 0; Do[sig = bsigma[n]; If[sig >= 2 n, Continue[]]; d = bdivnum[n]; If[d > dm, Print[n]; dm = d], {n, 1, 1000000000}] (* after Michael De Vlieger at A188999 and A286324 *)
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
    biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
    lista(nn) = {my(maxd = 0); for(n=1, nn, vbiudiv = biudivs(n); if ((vecsum(vbiudiv) < 2*n) && (#vbiudiv > maxd), print1(n, ", "); maxd = #vbiudiv;););} \\ Michel Marcus, Apr 17 2018

Extensions

a(15)-a(17) from Amiram Eldar, Jan 26 2019
Showing 1-3 of 3 results.