A303022 Number of free pure symmetric multifunctions (with empty expressions allowed) with one atom, n positions, and no unitary parts (subexpressions of the form x[y]).
1, 1, 1, 2, 5, 12, 27, 63, 152, 376, 939, 2371, 6047, 15577, 40429, 105637, 277625, 733518, 1947126, 5190503, 13888811, 37291968, 100444019, 271316998, 734802247, 1994873116, 5427893149, 14799525982, 40429761365, 110645688034, 303316712450, 832799212777
Offset: 1
Keywords
Examples
The a(6) = 12 Mathematica expressions: o[o,o[][]] o[o[],o[]] o[o,o,o[]] o[o,o,o,o] o[][o,o[]] o[][o,o,o] o[][][o,o] o[o,o[]][] o[o,o,o][] o[][o,o][] o[o,o][][] o[][][][][]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Mathematica
allOLBF[n_]:=allOLBF[n]=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-1}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{allOLBF[h],Select[Union[Sort/@Tuples[allOLBF/@p]],Length[#]!=1&]}],{p,IntegerPartitions[g]}]]]; Table[Length[allOLBF[n]],{n,10}]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} seq(n)={my(v=[1]); for(n=2, n, my(t=EulerT(v)-v); v=concat(v, v[n-1] + sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018
Extensions
Terms a(21) and beyond from Andrew Howroyd, Aug 19 2018
Comments