cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303054 Number of minimum total dominating sets in the n-ladder graph.

Original entry on oeis.org

1, 4, 1, 16, 9, 1, 64, 16, 1, 169, 25, 1, 361, 36, 1, 676, 49, 1, 1156, 64, 1, 1849, 81, 1, 2809, 100, 1, 4096, 121, 1, 5776, 144, 1, 7921, 169, 1, 10609, 196, 1, 13924, 225, 1, 17956, 256, 1, 22801, 289, 1, 28561, 324, 1, 35344, 361, 1, 43264, 400, 1, 52441
Offset: 1

Views

Author

Eric W. Weisstein, Apr 17 2018

Keywords

Comments

Each vertex can dominate up to three others. A ladder with a length that is an exact multiple of three can be dominated in only one way with 2n/3 vertices. - Andrew Howroyd, Apr 21 2018

Examples

			From _Andrew Howroyd_, Apr 21 2018: (Start)
a(9) = 1 because there is only one arrangement of 6 vertices that is totally dominating and no set with fewer vertices can be totally dominating:
  .__o__.__.__o__.__.__o__.
     |        |        |
  .__o__.__.__o__.__.__o__.
(End)
		

Crossrefs

Row 2 of A303293.

Programs

  • Mathematica
    Table[Piecewise[{{1, Mod[n, 3] == 0}, {((n^2 + 13 n + 4)/18)^2, Mod[n, 3] == 1}, {((n + 4)/3)^2, Mod[n, 3] == 2}}], {n, 58}] (* Eric W. Weisstein, Apr 23 2018 and Michael De Vlieger, Apr 21 2018 *)
    Table[(916 + 392 n + 213 n^2 + 26 n^3 + n^4 - (-56 + 392 n + 213 n^2 + 26 n^3 + n^4) Cos[2 n Pi/3] + Sqrt[3] (-20 + 7 n + n^2) (28 + 19 n + n^2) Sin[2 n Pi/3])/972, {n, 20}] (* Eric W. Weisstein, Apr 23 2018 *)
    LinearRecurrence[{0, 0, 5, 0, 0, -10, 0, 0, 10, 0, 0, -5, 0, 0, 1}, {1, 4, 1, 16, 9, 1, 64, 16, 1, 169, 25, 1, 361, 36, 1}, 20] (* Eric W. Weisstein, Apr 23 2018 *)
    CoefficientList[Series[(-1 - 4 x - x^2 - 11 x^3 + 11 x^4 + 4 x^5 + 6 x^6 - 11 x^7 - 6 x^8 + x^9 + 5 x^10 + 4 x^11 - x^12 - x^13 - x^14)/(-1 + x^3)^5, {x, 0, 20}], x] (* Eric W. Weisstein, Apr 23 2018 *)
  • PARI
    a(n)={if(n%3==0, 1, if(n%3==1, (n^2 + 13*n + 4)/18, (n + 4)/3))^2} \\ Andrew Howroyd, Apr 21 2018
    
  • PARI
    Vec(x*(1 + 4*x + x^2 + 11*x^3 - 11*x^4 - 4*x^5 - 6*x^6 + 11*x^7 + 6*x^8 - x^9 - 5*x^10 - 4*x^11 + x^12 + x^13 + x^14) / ((1 - x)^5*(1 + x + x^2)^5) + O(x^60)) \\ Colin Barker, Apr 23 2018

Formula

a(n) = 1 for n mod 3 = 0
= ((n^2 + 13*n + 4)/18)^2 for n mod 3 = 1
= ((n + 4)/3)^2 for n mod 3 = 2.
G.f.: x*(-1 - 4*x - x^2 - 11*x^3 + 11*x^4 + 4*x^5 + 6*x^6 - 11*x^7 - 6*x^8 + x^9 + 5*x^10 + 4*x^11 - x^12 - x^13 - x^14)/(-1 + x^3)^5.
a(n) = 5*a(n-3) - 10*a(n-6) + 10*a(n-9) - 5*a(n-12) + a(n-15) for n>15. - Colin Barker, Apr 23 2018

Extensions

Terms a(14) and beyond from Andrew Howroyd, Apr 21 2018