A303290
G.f. A(x) satisfies: 2 = Sum_{n>=0} (1/2^n) * (1+x)^(n^2) / A(x)^n.
Original entry on oeis.org
1, 3, 15, 225, 6003, 223029, 10403175, 577700889, 37009173207, 2679339499305, 216031850406327, 19187294118006057, 1861057604220294591, 195742656849628038465, 22192660352433291780159, 2698458809215198981964481, 350326879575505922875480047, 48370384900519379918253881361, 7078145146554395463373624118319, 1094300840117324691452685873392145
Offset: 0
G.f.: A(x) = 1 + 3*x + 15*x^2 + 225*x^3 + 6003*x^4 + 223029*x^5 + 10403175*x^6 + 577700889*x^7 + 37009173207*x^8 + 2679339499305*x^9 + 216031850406327*x^10 + ...
such that A = A(x) satisfies:
2 = 1 + (1+x)/(2*A) + (1+x)^4/(2*A)^2 + (1+x)^9/(2*A)^3 + (1+x)^16/(2*A)^4 + (1+x)^25/(2*A)^5 + (1+x)^36/(2*A)^6 + (1+x)^49/(2*A)^7 + (1+x)^64/(2*A)^8 + ...
-
/* Find A(x) that satisfies the continued fraction: */
{a(n) = my(A=[1],q=1+x,CF=1); for(i=1,n, A=concat(A,0); m=#A; for(k=0, m, CF = 1/(1 - q^(4*m-4*k+1)/(2*Ser(A) - q^(2*m-2*k+1)*(q^(2*m-2*k+2) - 1)*CF)) ); A[#A] = Vec(CF)[#A]/2 );A[n+1]}
for(n=0,30,print1(a(n),", "))
A301929
G.f. A(x) satisfies: x = Sum_{n>=1} (1+x)^(n^2) * x^n / A(x)^n.
Original entry on oeis.org
1, 2, 3, 5, 12, 37, 138, 595, 2843, 14844, 83212, 496473, 3128584, 20707672, 143342216, 1034075244, 7752274237, 60251286521, 484483164365, 4023459643530, 34455215830001, 303839675537827, 2755675307738286, 25675275100067189, 245502965520844801, 2406797239543382867, 24170220195274548727, 248441483165679473094, 2611787614440970964621
Offset: 0
G.f.: A(x) = 1 + 2*x + 3*x^2 + 5*x^3 + 12*x^4 + 37*x^5 + 138*x^6 + 595*x^7 + 2843*x^8 + 14844*x^9 + 83212*x^10 + 496473*x^11 + 3128584*x^12 + ...
such that
x = (1+x)*x/A(x) + (1+x)^4*x^2/A(x)^2 + (1+x)^9*x^3/A(x)^3 + (1+x)^16*x^4/A(x)^4 + (1+x)^25*x^5/A(x)^5 + (1+x)^36*x^6/A(x)^6 + (1+x)^49*x^7/A(x)^7 + ...
-
{a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = Vec(sum(n=0, #A, ((1+x)^n +x*O(x^#A))^n * x^n/Ser(A)^n ) )[#A+1] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A303057
G.f. A(x) satisfies: A(x) = Sum_{n>=0} ((1+x)^n - 1)^n / A(x)^n.
Original entry on oeis.org
1, 1, 3, 21, 221, 3117, 54597, 1136127, 27293715, 742143113, 22512196673, 753402861159, 27571631761077, 1095346704175755, 46948527167219957, 2159638211148320085, 106129271000784614099, 5549226963359699829711, 307623817602110038648839, 18022345501064909362595723, 1112657716434830018636702797
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 21*x^3 + 221*x^4 + 3117*x^5 + 54597*x^6 + 1136127*x^7 + 27293715*x^8 + 742143113*x^9 + 22512196673*x^10 + ...
such that
A(x) = 1 + ((1+x)-1)/A(x) + ((1+x)^2-1)^2/A(x)^2 + ((1+x)^3-1)^3/A(x)^3 + ((1+x)^4-1)^4/A(x)^4 + ((1+x)^5-1)^5/A(x)^5 + ((1+x)^6-1)^6/A(x)^6 + ...
also,
1 = 1/(A(x) + 1) + (1+x)/(A(x) + (1+x))^2 + (1+x)^4/(A(x) + (1+x)^2)^3 + (1+x)^9/(A(x) + (1+x)^3)^4 + (1+x)^16/(A(x) + (1+x)^4)^5 + (1+x)^25/(A(x) + (1+x)^5)^6 + (1+x)^36/(A(x) + (1+x)^6)^7 + ... + (1+x)^(n^2) / (A(x) + (1+x)^n)^(n+1) + ...
-
{a(n) = my(A=[1]); for(i=1,n, A = concat(A,0); A[#A] = Vec(sum(n=0,#A, ((1+x)^n - 1 +x*O(x^#A))^n / Ser(A)^(n+1) ) )[#A] );A[n+1]}
for(n=0,30, print1(a(n),", "))
A318644
G.f. A(x) satisfies: A(x) = Sum_{n>=0} (1+x)^(n*(n+1)/2) * x^n / A(x)^n.
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 11, 32, 106, 376, 1433, 5782, 24574, 109393, 508026, 2453256, 12285347, 63656731, 340626704, 1879183856, 10672897341, 62323897482, 373748877678, 2299318074357, 14497472040378, 93599428822052, 618278575554155, 4175348680420942, 28806364292660618, 202899326988089615, 1458130019936912105, 10685096640964659318
Offset: 0
G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 4*x^5 + 11*x^6 + 32*x^7 + 106*x^8 + 376*x^9 + 1433*x^10 + 5782*x^11 + 24574*x^12 + 109393*x^13 + 508026*x^14 + ...
such that
A(x) = 1 + (1+x)*x/A(x) + (1+x)^3*x^2/A(x)^2 + (1+x)^6*x^3/A(x)^3 + (1+x)^10*x^4/A(x)^4 + (1+x)^15*x^5/A(x)^5 + (1+x)^21*x^6/A(x)^6 + (1+x)^28*x^7/A(x)^7 + ... + (1+x)^(n*(n+1)/2) * x^n / A(x)^n + ...
Also
1 + x = 1 + x/A(x) + (1+x)*x^2/A(x)^2 + (1+x)^3*x^3/A(x)^3 + (1+x)^6*x^4/A(x)^4 + (1+x)^10*x^5/A(x)^5 + (1+x)^15*x^6/A(x)^6 + (1+x)^21*x^7/A(x)^7 + ...
-
{a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = Vec(sum(n=0, #A, (1+x +x*O(x^#A))^(n*(n+1)/2) * x^n/Ser(A)^n ) )[#A] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A321607
G.f.: A(x) = Sum_{n>=0} x^n * (1+x)^(2*n^2) / A(x)^(2*n).
Original entry on oeis.org
1, 1, 1, 3, 11, 50, 294, 1833, 13093, 100456, 830541, 7313419, 68137388, 668327844, 6873073257, 73853969234, 826869429175, 9622413867975, 116144019094407, 1451337070767512, 18744666092043742, 249848115448337748, 3432213607060089249, 48532637291552045262, 705602120522021975822, 10536473807470843781980, 161442021516682347676435
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 11*x^4 + 50*x^5 + 294*x^6 + 1833*x^7 + 13093*x^8 + 100456*x^9 + 830541*x^10 + 7313419*x^11 + 68137388*x^12 + ...
such that
A(x) = 1 + x*(1+x)^2/A(x)^2 + x^2*(1+x)^8/A(x)^4 + x^3*(1+x)^18/A(x)^6 + x^4*(1+x)^32/A(x)^8 + x^5*(1+x)^50/A(x)^10 + x^6*(1+x)^72/A(x)^12 + ...
-
{a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = Vec(sum(n=0, #A, ((1+x)^n +x*O(x^#A))^(2*n) * x^n/Ser(A)^(2*n+1) ) )[#A] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A321608
G.f.: A(x) = Sum_{n>=0} x^n * (1+x)^(2*n^2) / A(x)^n.
Original entry on oeis.org
1, 1, 2, 5, 22, 100, 581, 3716, 26352, 203664, 1688485, 14922599, 139579911, 1374581231, 14194823072, 153178320198, 1722363891798, 20130227813033, 244028318224686, 3062549991414408, 39723783490631858, 531726501000859625, 7335052105035725087, 104148717578191099492, 1520349684313678309811, 22793632534841442908565, 350622445923759834928352, 5528760266814203384425285
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 22*x^4 + 100*x^5 + 581*x^6 + 3716*x^7 + 26352*x^8 + 203664*x^9 + 1688485*x^10 + 14922599*x^11 + 139579911*x^12 + ...
such that
A(x) = 1 + x*(1+x)^2/A(x) + x^2*(1+x)^8/A(x)^2 + x^3*(1+x)^18/A(x)^3 + x^4*(1+x)^32/A(x)^4 + x^5*(1+x)^50/A(x)^5 + x^6*(1+x)^72/A(x)^6 + ...
-
{a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = Vec(sum(n=0, #A, ((1+x)^n +x*O(x^#A))^(2*n) * x^n/Ser(A)^(n+1) ) )[#A] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A320951
G.f.: A(x) satisfies: A(x) = Sum_{n>=0} x^n * (1+x)^(n*(n+1)) / A(x)^n.
Original entry on oeis.org
1, 1, 2, 3, 9, 28, 110, 485, 2358, 12486, 70726, 425747, 2702837, 18004835, 125337381, 908737863, 6843536374, 53407750147, 431075414218, 3592384229312, 30862831600689, 272976843937138, 2482698463801148, 23192576636266041, 222310388884578760, 2184486850658804107, 21985733344615744620, 226455749821063728474, 2385331864619907236147, 25676170688883138634306, 282253492062060457638824
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 9*x^4 + 28*x^5 + 110*x^6 + 485*x^7 + 2358*x^8 + 12486*x^9 + 70726*x^10 + 425747*x^11 + 2702837*x^12 + ...
such that
A(x) = 1 + x*(1+x)^2/A(x) + x^2*(1+x)^6/A(x)^2 + x^3*(1+x)^12/A(x)^3 + x^4*(1+x)^20/A(x)^4 + x^5*(1+x)^30/A(x)^5 + ...
Also
1 + x = 1 + x/A(x) + x^2*(1+x)^2/A(x)^2 + x^3*(1+x)^6/A(x)^3 + x^4*(1+x)^12/A(x)^4 + x^5*(1+x)^20/A(x)^5 + x^6*(1+x)^30/A(x)^6 + ...
RELATED SERIES.
Sum_{n>=0} x^n * (1+x)^(n^2) / A(x)^n = 1 + x + x^2 + x^3 + 3*x^4 + 8*x^5 + 32*x^6 + 135*x^7 + 649*x^8 + 3381*x^9 + 18894*x^10 + 112382*x^11 + 705174*x^12 + ...
A(A(x)-1) = 1 + x + 4*x^2 + 14*x^3 + 56*x^4 + 251*x^5 + 1239*x^6 + 6627*x^7 + 38112*x^8 + 233692*x^9 + 1517788*x^10 + 10384824*x^11 + ...
where A(A(x)-1) = Sum_{n>=0} (A(x)-1)^n * A(x)^(n*(n+1)) / A(A(x)-1)^n.
-
{a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = Vec(sum(n=0, #A, ((1+x)^n +x*O(x^#A))^(n+1) * x^n/Ser(A)^n ) )[#A] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A320954
G.f. A(x) satisfies: 1/(1-x) = Sum_{n>=0} (1+x)^(n^2) * x^n / A(x)^n.
Original entry on oeis.org
1, 1, 2, 5, 14, 50, 200, 919, 4633, 25361, 148606, 923394, 6043996, 41447150, 296571213, 2206965193, 17034374165, 136066491764, 1122656493744, 9552206133005, 83695193972045, 754199756930791, 6981787930209535, 66327351641879318, 646031757787129761, 6445726513363688990, 65825739028009602120, 687540665329016479660
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 50*x^5 + 200*x^6 + 919*x^7 + 4633*x^8 + 25361*x^9 + 148606*x^10 + 923394*x^11 + 6043996*x^12 + ...
such that
1/(1-x) = 1 + (1+x)*x/A(x) + (1+x)^4*x^2/A(x)^2 + (1+x)^9*x^3/A(x)^3 + (1+x)^16*x^4/A(x)^4 + (1+x)^25*x^5/A(x)^5 + (1+x)^36*x^6/A(x)^6 + ...
-
{a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = -1 + Vec(sum(n=0, #A, ((1+x)^n +x*O(x^#A))^n * x^n/Ser(A)^n ) )[#A+1] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A324614
G.f. A(x) satisfies: 1 = Sum_{n>=0} x^n * (1 + n*x)^n / A(x)^(n+1).
Original entry on oeis.org
1, 1, 1, 2, 3, 9, 21, 76, 241, 962, 3687, 15930, 68993, 320025, 1511977, 7471685, 37780922, 197506241, 1056928087, 5810534182, 32667061545, 187952045908, 1104355482420, 6623724997302, 40514607315969, 252490521215350, 1602602016169781, 10349126940718990, 67984993381548943, 453846136553840921, 3078734565764856380, 21202631838742029002, 148238158399524358952, 1051257411796217414475
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 9*x^5 + 21*x^6 + 76*x^7 + 241*x^8 + 962*x^9 + 3687*x^10 + 15930*x^11 + 68993*x^12 + 320025*x^13 + 1511977*x^14 + ...
such that
1 = 1/A(x) + x*(1+x)/A(x)^2 + x^2*(1+2*x)^2/A(x)^3 + x^3*(1+3*x)^3/A(x)^4 + x^4*(1+4*x)^4/A(x)^5 + x^5*(1+5*x)^5/A(x)^6 + x^6*(1+6*x)^6/A(x)^7 + ...
-
{a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
A[#A] = polcoeff( sum(n=0,#A, x^n*(1+n*x)^n/Ser(A)^(n+1)), #A-1););A[n+1]}
for(n=0,40, print1(a(n),", "))
A325155
G.f. A(x) satisfies: x = Sum_{n>=1} x^n * (1+x)^(n^2/2) / A(x)^(n/2).
Original entry on oeis.org
1, 3, 5, 7, 11, 21, 49, 133, 408, 1376, 5020, 19564, 80741, 350551, 1593066, 7547792, 37163568, 189662934, 1001046684, 5453972462, 30622950955, 176942133603, 1050773432990, 6405898358012, 40048848677954, 256521565555908, 1681897617101795, 11278819380424173, 77301464920178158, 541084956406886214, 3865540113371340736, 28167799470180443028, 209238063076396838375, 1583562040116769584091, 12204247180832799551059, 95731651337427271893873
Offset: 0
G.f.: A(x) = 1 + 3*x + 5*x^2 + 7*x^3 + 11*x^4 + 21*x^5 + 49*x^6 + 133*x^7 + 408*x^8 + 1376*x^9 + 5020*x^10 + 19564*x^11 + 80741*x^12 + ...
such that
A(x) = 1 + x*(1+x)^(1/2)/A(x)^(1/2) + x^2*(1+x)^2/A(x) + x^3*(1+x)^(9/2)/A(x)^(3/2) + x^4*(1+x)^8/A(x)^2 + x^5*(1+x)^(25/2)/A(x)^(5/2) + x^6*(1+x)^18/A(x)^3 + x^7*(1+x)^(49/2)/A(x)^(7/2) + x^8*(1+x)^32/A(x)^4 + ...
Note that
sqrt(A(x))*sqrt(1+x) = 1 + x + x^2 + x^3 + 2*x^4 + 4*x^5 + 11*x^6 + 32*x^7 + 106*x^8 + 376*x^9 + 1433*x^10 + 5782*x^11 + ... + A318644(n)*x^n + ...
-
{a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = 2*polcoeff( sum(n=0,#A+1, x^n*(1+x +x*O(x^#A))^(n^2/2) / Ser(A)^(n/2) ),#A)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
Showing 1-10 of 10 results.