A303058
G.f. A(x) satisfies: A(x) = Sum_{n>=0} (1+x)^(n^2) * x^n / A(x)^n.
Original entry on oeis.org
1, 1, 1, 2, 5, 16, 61, 259, 1228, 6284, 34564, 201978, 1246652, 8084728, 54862377, 388266809, 2857708840, 21822753453, 172550972216, 1410144139982, 11892084248959, 103343300813517, 924223611649636, 8496346816801059, 80201063980292729, 776585923239589681, 7706568335863727817, 78311132374535936605
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 16*x^5 + 61*x^6 + 259*x^7 + 1228*x^8 + 6284*x^9 + 34564*x^10 + 201978*x^11 + 1246652*x^12 + ...
such that
A(x) = 1 + (1+x)*x/A(x) + (1+x)^4*x^2/A(x)^2 + (1+x)^9*x^3/A(x)^3 + (1+x)^16*x^4/A(x)^4 + (1+x)^25*x^5/A(x)^5 + (1+x)^36*x^6/A(x)^6 + ...
-
{a(n) = my(A=[1]); for(i=1,n, A = concat(A,0); A[#A] = Vec(sum(n=0,#A, ((1+x)^n +x*O(x^#A))^n * x^n/Ser(A)^n ) )[#A] );A[n+1]}
for(n=0,30,print1(a(n),", "))
A303291
G.f. A(x) satisfies: 3 = Sum_{n>=0} (2/3)^n * (1 + x)^(n^2) / A(x)^n.
Original entry on oeis.org
1, 5, 70, 3170, 252160, 27705800, 3806286820, 621124623740, 116766042046000, 24783363325335440, 5854493683431121840, 1522701357625214096240, 432347094526718807347480, 133078785461406479045306360, 44145742694332046133435657280, 15702781293109570148744738306240, 5962874290966165187708554294296880, 2407878412120285331813837276575565360
Offset: 0
G.f.: A(x) = 1 + 5*x + 70*x^2 + 3170*x^3 + 252160*x^4 + 27705800*x^5 + 3806286820*x^6 + 621124623740*x^7 + 116766042046000*x^8 + ...
such that A = A(x) satisfies:
3 = 1 + (1+x)/(3*A/2) + (1+x)^4/(3*A/2)^2 + (1+x)^9/(3*A/2)^3 + (1+x)^16/(3*A/2)^4 + (1+x)^25/(3*A/2)^5 + (1+x)^36/(3*A/2)^6 + (1+x)^49/(3*A/2)^7 + ...
-
/* Find A(x) that satisfies the continued fraction: */
{a(n) = my(A=[1], q=1+x, CF=1); for(i=1, n, A=concat(A, 0); m=#A; for(k=0, m, CF = 1/(1 - q^(4*m-4*k+1)/(3/2*Ser(A) - q^(2*m-2*k+1)*(q^(2*m-2*k+2) - 1)*CF)) ); A[#A] = Vec(CF)[#A]/6 ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A303292
G.f. A(x) satisfies: 4 = Sum_{n>=0} (3/4)^n * (1 + x)^(n^2) / A(x)^n.
Original entry on oeis.org
1, 7, 189, 17283, 2755053, 604260531, 165416203197, 53736069429315, 20098682471065149, 8484270818691168963, 3985069388942026022589, 2060504358592580623699011, 1162904612283296975554475517, 711422819982429170172765550083, 469007739834268780510389856367613, 331521891387779056571085490125831171, 250157485456407234540581483486760865533
Offset: 0
G.f.: A(x) = 1 + 7*x + 189*x^2 + 17283*x^3 + 2755053*x^4 + 604260531*x^5 + 165416203197*x^6 + 53736069429315*x^7 + 20098682471065149*x^8 + ...
such that A = A(x) satisfies:
4 = 1 + (1+x)/(4*A/3) + (1+x)^4/(4*A/3)^2 + (1+x)^9/(4*A/3)^3 + (1+x)^16/(4*A/3)^4 + (1+x)^25/(4*A/3)^5 + (1+x)^36/(4*A/3)^6 + (1+x)^49/(4*A/3)^7 + ...
-
/* Find A(x) that satisfies the continued fraction: */
{a(n) = my(A=[1], q=1+x, CF=1); for(i=1, n, A=concat(A, 0); m=#A; for(k=0, m, CF = 1/(1 - q^(4*m-4*k+1)/(4/3*Ser(A) - q^(2*m-2*k+1)*(q^(2*m-2*k+2) - 1)*CF)) ); A[#A] = Vec(CF)[#A]/12 ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A325286
G.f. satisfies: 1 = Sum_{n>=0} (1+x)^(n*(n-1)/2) / A(x)^n * 1/2^(n+1).
Original entry on oeis.org
1, 1, 3, 25, 343, 6441, 150975, 4203201, 134852079, 4886641681, 197154406591, 8760602600193, 425074860993439, 22363792326962881, 1268239233311498079, 77129745316500047745, 5008173999379887257151, 345838251972031108425345, 25309861534968595801377279, 1956926079593452273940279169, 159406563966400881627947865279, 13645204581985719926987977747329, 1224591755319676016226530026499583, 114980206425267526899287638805977857
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 25*x^3 + 343*x^4 + 6441*x^5 + 150975*x^6 + 4203201*x^7 + 134852079*x^8 + 4886641681*x^9 + 197154406591*x^10 + ...
such that
1 = 1/2 + 1/(2^2*A(x)) + (1+x)/(2^3*A(x)^2) + (1+x)^3/(2^4*A(x)^3) + (1+x)^6/(2^5*A(x)^4) + (1+x)^10/(2^6*A(x)^5) + (1+x)^15/(2^7*A(x)^6) + (1+x)^21/(2^8*A(x)^7) + ...
also,
1 = 1/(2*A(x)) + (1+x)/(2*A(x))^2 + (1+x)^3/(2*A(x))^3 + (1+x)^6/(2*A(x))^4 + (1+x)^10/(2*A(x))^5 + (1+x)^15/(2*A(x))^6 + (1+x)^21/(2*A(x))^7 + (1+x)^28/(2*A(x))^8 + ...
-
/* Requires adequate precision */
{a(n) = my(A=[1]); for(i=1,n, A = concat(A,0); A[#A] = round( polcoeff( sum(m=0,10*#A+100, (1+x+x*O(x^#A))^(m*(m-1)/2)/Ser(A)^m/2^(m+1)*1.),#A-1)));A[n+1]}
for(n=0,25,print1(a(n),", "))
A303289
E.g.f. A(x) satisfies: e = Sum_{n>=0} (1/n!) * (1+x)^(n^2) / A(x)^n.
Original entry on oeis.org
1, 2, 5, 31, 390, 7926, 229448, 8769552, 421254088, 24578690456, 1699003652752, 136526757080176, 12565047627623648, 1308650039442105504, 152723805589647826368, 19806995417441865105472, 2834647872410303847945600, 444947841160313990957842304, 76198407065481146373641422336, 14170329519388795065500512696832
Offset: 0
E.g.f.: A(x) = 1 + 2*x + 5*x^2/2! + 31*x^3/3! + 390*x^4/4! + 7926*x^5/5! + 229448*x^6/6! + 8769552*x^7/7! + 421254088*x^8/8! + 24578690456*x^9/9! + 1699003652752*x^10/10! + ...
such that A = A(x) satisfies:
e = 1 + (1+x)/A + (1+x)^4/(2!*A^2) + (1+x)^9/(3!*A^3) + (1+x)^16/(4!*A^4) + (1+x)^25/(5!*A^5) + (1+x)^36/(6!*A^6) + (1+x)^49/(7!*A^7) + ...
-
\p100; N=20;
A=[1]; for(i=1,N, A=concat(A,0); A[#A] = Vec( round( sum(n=0,200 + 2*#A, (1+x +x*O(x^#A))^(n^2)/Ser(A)^n/n!*1. )/exp(1)*(#A-1)! ) )[#A]/(#A-1)! ); Vec(serlaplace(Ser(A)))
Showing 1-5 of 5 results.
Comments