A303102 T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
0, 1, 0, 1, 3, 0, 2, 15, 11, 0, 3, 46, 77, 34, 0, 5, 161, 431, 486, 111, 0, 8, 601, 2913, 4667, 2869, 361, 0, 13, 2208, 19393, 58160, 49534, 17229, 1172, 0, 21, 8053, 128921, 709333, 1138331, 523578, 102952, 3809, 0, 34, 29415, 857789, 8650205, 25372284, 22292709
Offset: 1
Examples
Some solutions for n=5 k=4 ..0..1..1..1. .0..0..1..1. .0..0..1..1. .0..0..0..0. .0..1..0..1 ..1..0..1..0. .1..1..1..1. .1..1..0..0. .0..1..1..1. .0..0..1..0 ..1..0..0..1. .0..0..0..1. .1..1..1..1. .0..0..1..0. .1..0..0..0 ..0..1..1..0. .0..1..1..0. .0..0..0..0. .0..1..0..1. .0..1..1..1 ..1..1..0..0. .1..1..0..0. .1..1..1..1. .1..0..1..0. .1..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..180
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4)
k=3: [order 11]
k=4: [order 26]
k=5: [order 90] for n>91
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = 3*a(n-1) +a(n-2) +4*a(n-3) +4*a(n-4) for n>5
n=3: [order 14] for n>15
n=4: [order 42] for n>43
Comments