A303118 Array read by antidiagonals: T(m,n) = number of minimal total dominating sets in the grid graph P_m X P_n.
0, 1, 1, 2, 4, 2, 1, 4, 4, 1, 2, 16, 6, 16, 2, 4, 16, 49, 49, 16, 4, 3, 49, 66, 169, 66, 49, 3, 4, 81, 225, 576, 576, 225, 81, 4, 8, 169, 640, 2601, 2622, 2601, 640, 169, 8, 9, 324, 1681, 10000, 14400, 14400, 10000, 1681, 324, 9, 10, 625, 4641, 38416, 81055, 137641, 81055, 38416, 4641, 625, 10
Offset: 1
Examples
Table begins: ============================================================= m\n| 1 2 3 4 5 6 7 8 ---+--------------------------------------------------------- 1 | 0 1 2 1 2 4 3 4 ... 2 | 1 4 4 16 16 49 81 169 ... 3 | 2 4 6 49 66 225 640 1681 ... 4 | 1 16 49 169 576 2601 10000 38416 ... 5 | 2 16 66 576 2622 14400 81055 440896 ... 6 | 4 49 225 2601 14400 137641 1081600 8185321 ... 7 | 3 81 640 10000 81055 1081600 11458758 125955729 ... 8 | 4 169 1681 38416 440896 8185321 125955729 1944369025 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..435 (first 29 antidiagonals)
- Eric Weisstein's World of Mathematics, Grid Graph.
- Eric Weisstein's World of Mathematics, Minimal Total Dominating Set.