cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A303293 Array read by antidiagonals: T(m,n) = number of minimum total dominating sets in the grid graph P_m X P_n.

Original entry on oeis.org

0, 1, 1, 2, 4, 2, 1, 1, 1, 1, 1, 16, 2, 16, 1, 4, 9, 1, 1, 9, 4, 3, 1, 3, 16, 3, 1, 3, 1, 64, 4, 256, 256, 4, 64, 1, 2, 16, 4, 4, 160, 4, 4, 16, 2, 9, 1, 9, 121, 25, 25, 121, 9, 1, 9, 4, 169, 12, 2916, 268, 144, 268, 2916, 12, 169, 4
Offset: 1

Views

Author

Andrew Howroyd, Apr 20 2018

Keywords

Comments

The minimum size of a total dominating set is the total domination number A300358(m, n).

Examples

			Table begins:
===============================================
m\n| 1  2  3    4    5     6   7    8     9
---+-------------------------------------------
1  | 0  1  2    1    1     4   3    1     2 ...
2  | 1  4  1   16    9     1  64   16     1 ...
3  | 2  1  2    1    3     4   4    9    12 ...
4  | 1 16  1   16  256     4 121 2916    25 ...
5  | 1  9  3  256  160    25 268 4225   510 ...
6  | 4  1  4    4   25   144 529 2025 10404 ...
7  | 3 64  4  121  268   529   4  441   630 ...
8  | 1 16  9 2916 4225  2025 441  256     9 ...
9  | 2  1 12   25  510 10404 630    9  1364 ...
...
		

Crossrefs

Rows 1..2 are A302654, A303054.
Main diagonal is A303142.

A300358 Array read by antidiagonals: T(m,n) = total domination number of the grid graph P_m X P_n.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 6, 5, 4, 4, 4, 6, 6, 8, 8, 6, 6, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 6, 6, 8, 10, 10, 10, 10, 8, 6, 6, 6, 8, 9, 12, 12, 12, 12, 12, 9, 8, 6, 6, 8, 10, 12, 14, 14, 14, 14, 12, 10, 8, 6, 7, 8, 11, 14, 15, 16, 15, 16, 15, 14, 11, 8, 7
Offset: 1

Views

Author

Andrew Howroyd, Apr 20 2018

Keywords

Examples

			Table begins:
=======================================================
m\n| 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16
---+---------------------------------------------------
1  | 1  2  2  2  3  4  4  4  5  6  6  6  7  8  8  8 ...
2  | 2  2  2  4  4  4  6  6  6  8  8  8 10 10 10 12 ...
3  | 2  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 ...
4  | 2  4  4  6  8  8 10 12 12 14 14 16 18 18 20 20 ...
5  | 3  4  5  8  9 10 12 14 15 16 18 20 21 22 24 26 ...
6  | 4  4  6  8 10 12 14 16 18 20 20 24 24 26 28 30 ...
7  | 4  6  7 10 12 14 15 18 20 22 24 26 27 30 32 34 ...
8  | 4  6  8 12 14 16 18 20 22 24 28 30 32 34 36 38 ...
9  | 5  6  9 12 15 18 20 22 25 28 30 32 35 38 40 42 ...
...
		

Crossrefs

Rows 1..2 are A004524(n+2), A302402.
Main diagonal is A302488.

A303111 Array read by antidiagonals: T(m,n) = number of total dominating sets in the grid graph P_m X P_n.

Original entry on oeis.org

0, 1, 1, 3, 9, 3, 4, 25, 25, 4, 5, 81, 161, 81, 5, 9, 289, 961, 961, 289, 9, 16, 961, 6235, 11236, 6235, 961, 16, 25, 3249, 39601, 137641, 137641, 39601, 3249, 25, 39, 11025, 251433, 1677025, 3270375, 1677025, 251433, 11025, 39
Offset: 1

Views

Author

Andrew Howroyd, Apr 18 2018

Keywords

Comments

Equivalently, the number of n X m binary matrices with every element adjacent to some 0 horizontally or vertically.

Examples

			Table begins:
=======================================================================
m\n|  1    2      3        4          5            6              7
---|-------------------------------------------------------------------
1  |  0    1      3        4          5            9             16 ...
2  |  1    9     25       81        289          961           3249 ...
3  |  3   25    161      961       6235        39601         251433 ...
4  |  4   81    961    11236     137641      1677025       20430400 ...
5  |  5  289   6235   137641    3270375     76405081     1783064069 ...
6  |  9  961  39601  1677025   76405081   3416753209   152598828321 ...
7  | 16 3249 251433 20430400 1783064069 152598828321 13057656650476 ...
...
		

Crossrefs

Rows 1..2 are A195971(n-1), A141583(n+1).
Main diagonal is A133793.
Cf. A218354 (dominating sets), A291872 (connected dominating sets).
Cf. A303114 (king graph), A303118 (minimal total dominating sets).

A332390 Array read by antidiagonals: T(m,n) is the number of minimal total dominating sets in the m X n king graph.

Original entry on oeis.org

0, 1, 1, 2, 6, 2, 1, 10, 10, 1, 2, 15, 20, 15, 2, 4, 52, 52, 52, 52, 4, 3, 105, 179, 141, 179, 105, 3, 4, 175, 418, 801, 801, 418, 175, 4, 8, 481, 1167, 2950, 7770, 2950, 1167, 481, 8, 9, 1028, 3498, 9792, 34790, 34790, 9792, 3498, 1028, 9, 10, 2000, 9074, 47527, 184318, 204372, 184318, 47527, 9074, 2000, 10
Offset: 1

Views

Author

Andrew Howroyd, Feb 10 2020

Keywords

Examples

			Array begins:
================================================================
m\n | 1   2    3     4       5        6         7          8
----+-----------------------------------------------------------
  1 | 0   1    2     1       2        4         3          4 ...
  2 | 1   6   10    15      52      105       175        481 ...
  3 | 2  10   20    52     179      418      1167       3498 ...
  4 | 1  15   52   141     801     2950      9792      47527 ...
  5 | 2  52  179   801    7770    34790    184318    1305358 ...
  6 | 4 105  418  2950   34790   204372   1593094   14720683 ...
  7 | 3 175 1167  9792  184318  1593094  16260853  231301551 ...
  8 | 4 481 3498 47527 1305358 14720683 231301551 4570906041 ...
  ...
		

Crossrefs

Rows 1..4 are A302655, A332392, A332393, A332394.
Main diagonal is A332391.

Formula

T(n,m) = T(m,n).

A302655 Number of minimal total dominating sets in the n-path graph.

Original entry on oeis.org

0, 1, 2, 1, 2, 4, 3, 4, 8, 9, 10, 16, 21, 25, 36, 49, 60, 81, 112, 144, 189, 256, 336, 441, 592, 784, 1029, 1369, 1820, 2401, 3182, 4225, 5586, 7396, 9815, 12996, 17200, 22801, 30210, 40000, 53001, 70225, 93000, 123201, 163240, 216225, 286416, 379456, 502665
Offset: 1

Views

Author

Eric W. Weisstein, Apr 11 2018

Keywords

Crossrefs

Row 1 of A303118.

Programs

  • Mathematica
    Table[If[Mod[n, 2] == 0, (RootSum[-1 - # + #^3 &, #^(n/2 + 5) (5 - 6 # + 4 #^2) &]/23)^2, (RootSum[-1 + # - 2 #^2 + #^3 &, #^((n - 1)/2) (4 - 2 # + 5 #^2) &] + RootSum[-1 + #^2 + #^3 &, #^((n - 1)/2) (-5 + 6 # + 3 #^2) &])/23], {n, 50}]
    LinearRecurrence[{0, 0, 1, 1, 1, 1, 0, -1, -1}, {0, 1, 2, 1, 2, 4, 3, 4, 8}, 50]
    CoefficientList[Series[(x (1 + 2 x + x^2 + x^3 + x^4 - x^5 - 2 x^6 - x^7))/(1 - x^3 - x^4 - x^5 - x^6 + x^8 + x^9), {x, 0, 50}], x]
  • PARI
    concat([0],Vec(x^2*(1 + 2*x + x^2 + x^3 + x^4 - x^5 - 2*x^6 - x^7)/(1 - x^3 - x^4 - x^5 - x^6 + x^8 + x^9) + O(x^50))) \\ Andrew Howroyd, Apr 15 2018

Formula

From Andrew Howroyd, Apr 15 2018: (Start)
a(n) = a(n-3) + a(n-4) + a(n-5) + a(n-6) - a(n-8) - a(n-9) for n > 9.
G.f.: x^2*(1 + 2*x + x^2 + x^3 + x^4 - x^5 - 2*x^6 - x^7)/(1 - x^3 - x^4 - x^5 - x^6 + x^8 + x^9).
a(2*n) = A000931(n+5)^2. (End)

Extensions

Terms a(20) and beyond from Andrew Howroyd, Apr 15 2018

A303072 Number of minimal total dominating sets in the n-ladder graph.

Original entry on oeis.org

1, 4, 4, 16, 16, 49, 81, 169, 324, 625, 1296, 2401, 4900, 9409, 18769, 36481, 71824, 141376, 276676, 544644, 1067089, 2099601, 4116841, 8088336, 15880225, 31181056, 61230625, 120209296, 236083225, 463497841, 910168561, 1787091076, 3509140644, 6890328064, 13529411856
Offset: 1

Views

Author

Eric W. Weisstein, Apr 18 2018

Keywords

Crossrefs

Row 2 of A303118.

Programs

  • Mathematica
    Table[(RootSum[1 - #^2 - #^3 - #^4 + #^6 &, (9 - 18 #^2 + 23 #^3 - 3 #^4 + 32 #^5) #^n &]/229)^2, {n, 40}]
    LinearRecurrence[{-1, 1, 3, 7, 8, 2, 6, 6, 0, 0, -6, -6, -2, -8, -7, -3, -1, 1, 1}, {1, 4, 4, 16, 16, 49, 81, 169,324, 625, 1296, 2401, 4900, 9409, 18769, 36481, 71824, 141376, 276676}, 40]
    CoefficientList[Series[(-1 - 5 x - 7 x^2 - 13 x^3 - 9 x^4 - x^5 - 4 x^6 + 5 x^7 + 13 x^8 + 14 x^9 + 21 x^10 + 15 x^11 + 12 x^12 + 15 x^13 + 9 x^14 + 3 x^15 - 2 x^17 - x^18)/(-1 - x + x^2 + 3 x^3 + 7 x^4 + 8 x^5 + 2 x^6 + 6 x^7 + 6 x^8 - 6 x^11 - 6 x^12 - 2 x^13 - 8 x^14 - 7 x^15 - 3 x^16 - x^17 + x^18 + x^19), {x, 0, 40}], x]

Formula

a(n) = A253412(n)^2.
G.f.: x*(-1 - 5*x - 7*x^2 - 13*x^3 - 9*x^4 - x^5 - 4*x^6 + 5*x^7 + 13*x^8 + 14*x^9 + 21*x^10 + 15*x^11 + 12*x^12 + 15*x^13 + 9*x^14 + 3*x^15 - 2*x^17 - x^18)/(-1 - x + x^2 + 3*x^3 + 7*x^4 + 8*x^5 + 2*x^6 + 6*x^7 + 6*x^8 - 6*x^11 - 6*x^12 - 2*x^13 - 8*x^14 - 7*x^15 - 3*x^16 - x^17 + x^18 + x^19).

A303161 Number of minimal total dominating sets in the n X n grid graph.

Original entry on oeis.org

0, 4, 6, 169, 2622, 137641, 11458758, 1944369025, 692690245830, 490393052832400, 695395811259688914, 1963720302048546357904, 11300709997961358290597645, 129580789221471473285725965124, 2990581397819168926985646623641461
Offset: 1

Views

Author

Eric W. Weisstein, Apr 19 2018

Keywords

Crossrefs

Main diagonal of A303118.

Formula

a(n) = A303118(n,n).

Extensions

a(7)-a(15) from Andrew Howroyd, Apr 20 2018
Showing 1-7 of 7 results.