cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A303335 Array read by antidiagonals: T(m,n) is the number of minimum total dominating sets in the m X n king graph.

Original entry on oeis.org

0, 1, 1, 2, 6, 2, 1, 9, 9, 1, 1, 4, 8, 4, 1, 4, 8, 1, 1, 8, 4, 3, 89, 3, 35, 3, 89, 3, 1, 56, 76, 9, 9, 76, 56, 1, 2, 16, 17, 1, 1, 1, 17, 16, 2, 9, 64, 1, 130, 9, 9, 130, 1, 64, 9, 4, 780, 6, 16, 60, 8684, 60, 16, 6, 780, 4, 1, 304, 229, 1, 89, 493, 493, 89, 1, 229, 304, 1
Offset: 1

Views

Author

Andrew Howroyd, Apr 21 2018

Keywords

Comments

The minimum size of a total dominating set is the total domination number A303378(m, n).

Examples

			Table begins:
=========================================
m\n| 1  2  3   4  5    6   7   8    9
---+-------------------------------------
1  | 0  1  2   1  1    4   3   1    2 ...
2  | 1  6  9   4  8   89  56  16   64 ...
3  | 2  9  8   1  3   76  17   1    6 ...
4  | 1  4  1  35  9    1 130  16    1 ...
5  | 1  8  3   9  1    9  60  89   45 ...
6  | 4 89 76   1  9 8684 493   1   50 ...
7  | 3 56 17 130 60  493 208  40   32 ...
8  | 1 16  1  16 89    1  40 604    1 ...
9  | 2 64  6   1 45   50  32   1 1192 ...
...
		

Crossrefs

Rows 1..2 are A302654, A350817.
Main diagonal is A303156.

A332391 Number of minimal total dominating sets in the n X n king graph.

Original entry on oeis.org

0, 6, 20, 141, 7770, 204372, 16260853, 4570906041, 1437642613959, 1151580438927120
Offset: 1

Views

Author

Andrew Howroyd, Feb 10 2020

Keywords

Crossrefs

Main diagonal of A332390.

Extensions

a(9)-a(10) from Christian Sievers, Dec 02 2023

A332392 Number of minimal total dominating sets in the 2 X n king graph.

Original entry on oeis.org

1, 1, 6, 10, 15, 52, 105, 175, 481, 1028, 2000, 4821, 10368, 21285, 48625, 105889, 224578, 498106, 1084331, 2331760, 5121797, 11162455, 24152665, 52751528, 114914016, 249490481, 543949956, 1184591233, 2575134753, 5608825345, 12212701582, 26569155354, 57849402071
Offset: 0

Views

Author

Andrew Howroyd, Feb 10 2020

Keywords

Crossrefs

Row n=2 of A332390.

Programs

  • PARI
    Vec((1 + x + 5*x^2 + 4*x^3 - 8*x^6 - 48*x^7 - 64*x^8)/(1 - x^2 - 5*x^3 - 4*x^4 - 8*x^5 - 16*x^6 + 8*x^7 + 48*x^8 + 64*x^9) + O(x^40))

Formula

a(n) = a(n-2) + 5*a(n-3) + 4*a(n-4) + 8*a(n-5) + 16*a(n-6) - 8*a(n-7) - 48*a(n-8) - 64*a(n-9) for n >= 9.
G.f.: (1 + x + 5*x^2 + 4*x^3 - 8*x^6 - 48*x^7 - 64*x^8)/(1 - x^2 - 5*x^3 - 4*x^4 - 8*x^5 - 16*x^6 + 8*x^7 + 48*x^8 + 64*x^9).

A332393 Number of minimal total dominating sets in the 3 X n king graph.

Original entry on oeis.org

1, 2, 10, 20, 52, 179, 418, 1167, 3498, 9074, 25737, 72785, 196688, 553939, 1545841, 4257959, 11909122, 33092586, 91740852, 255765150, 710642687, 1974282820, 5494583699, 15269944796, 42450687178, 118071427215, 328208378089, 912542015410, 2537483145585, 7054481803595
Offset: 0

Views

Author

Andrew Howroyd, Feb 10 2020

Keywords

Crossrefs

Row n=3 of A332390.

Formula

G.f.: (1 + x + 6*x^2 - x^3 - 2*x^4 - 2*x^5 - 66*x^6 - 124*x^7 - 62*x^8 + 52*x^9 + 13*x^10 + x^11 + 22*x^12 + 203*x^13 + 174*x^14 - 18*x^15 + 12*x^16 + 112*x^17 + 15*x^18 - 161*x^19 - 78*x^20 - 61*x^21 + 59*x^22 - 103*x^23 + 123*x^24 - 54*x^25 + 114*x^26 - 63*x^27 + 62*x^28 - 26*x^29 - 35*x^30 + 11*x^31 - 22*x^32 + 23*x^33 - 28*x^34 + 18*x^35)/(1 - x - 2*x^2 - 7*x^3 - 19*x^5 - 23*x^6 + 85*x^7 + 136*x^8 + 62*x^9 - 72*x^10 + 30*x^11 + 31*x^12 - 36*x^13 - 232*x^14 - 163*x^15 + 78*x^16 - 84*x^17 - 130*x^18 + 12*x^19 + 173*x^20 + 62*x^21 + 93*x^22 - 48*x^23 + 131*x^24 - 134*x^25 + 49*x^26 - 129*x^27 + 58*x^28 - 71*x^29 + 24*x^30 + 38*x^31 - 18*x^32 + 31*x^33 - 23*x^34 + 28*x^35 - 18*x^36).

A332394 Number of minimal total dominating sets in the 4 X n king graph.

Original entry on oeis.org

1, 1, 15, 52, 141, 801, 2950, 9792, 47527, 193530, 748908, 3136113, 12662762, 51628821, 215202537, 877488961, 3564479615, 14617739032, 59930350355, 245634413693, 1006434474838, 4115218924012, 16838191789089, 68996553122238, 282651353770552, 1157272492569645
Offset: 0

Views

Author

Andrew Howroyd, Feb 10 2020

Keywords

Crossrefs

Row n=4 of A332390.
Showing 1-5 of 5 results.