cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A350815 Array read by antidiagonals: T(m,n) is the number of minimum dominating sets in the m X n king graph.

Original entry on oeis.org

1, 2, 2, 1, 4, 1, 4, 2, 2, 4, 3, 16, 1, 16, 3, 1, 12, 4, 4, 12, 1, 8, 4, 3, 256, 3, 4, 8, 4, 64, 1, 144, 144, 1, 64, 4, 1, 32, 8, 16, 79, 16, 8, 32, 1, 13, 8, 4, 4096, 9, 9, 4096, 4, 8, 13, 5, 208, 1, 1024, 1656, 1, 1656, 1024, 1, 208, 5, 1, 80, 13, 64, 408, 64, 64, 408, 64, 13, 80, 1
Offset: 1

Views

Author

Andrew Howroyd, Jan 17 2022

Keywords

Comments

The minimum size of a dominating set is the domination number which in the case of an m X n king graph is given by (ceiling(m/3) * ceiling(n/3)).

Examples

			Table begins:
============================================
m\n | 1  2  3    4    5   6      7     8
----+---------------------------------------
  1 | 1  2  1    4    3   1      8     4 ...
  2 | 2  4  2   16   12   4     64    32 ...
  3 | 1  2  1    4    3   1      8     4 ...
  4 | 4 16  4  256  144  16   4096  1024 ...
  5 | 3 12  3  144   79   9   1656   408 ...
  6 | 1  4  1   16    9   1     64    16 ...
  7 | 8 64  8 4096 1656  64 243856 29744 ...
  8 | 4 32  4 1024  408  16  29744  3600 ...
     ...
		

Crossrefs

Rows 1..3 are A347633, A350816, A347633.
Main diagonal is A347554.
Cf. A075561, A218663 (dominating sets), A286849 (minimal dominating sets), A303335, A350818, A350819.

Formula

T(n,m) = T(m,n).
T(3*m, 3*n) = 1; T(3*m+1, 3*n) = (m^2 + 5*m + 2)^n; T(3*m+2, 3*n) = (m+2)^n.
T(3*m-1, 3*n-1) = A350819(m, n).

A332390 Array read by antidiagonals: T(m,n) is the number of minimal total dominating sets in the m X n king graph.

Original entry on oeis.org

0, 1, 1, 2, 6, 2, 1, 10, 10, 1, 2, 15, 20, 15, 2, 4, 52, 52, 52, 52, 4, 3, 105, 179, 141, 179, 105, 3, 4, 175, 418, 801, 801, 418, 175, 4, 8, 481, 1167, 2950, 7770, 2950, 1167, 481, 8, 9, 1028, 3498, 9792, 34790, 34790, 9792, 3498, 1028, 9, 10, 2000, 9074, 47527, 184318, 204372, 184318, 47527, 9074, 2000, 10
Offset: 1

Views

Author

Andrew Howroyd, Feb 10 2020

Keywords

Examples

			Array begins:
================================================================
m\n | 1   2    3     4       5        6         7          8
----+-----------------------------------------------------------
  1 | 0   1    2     1       2        4         3          4 ...
  2 | 1   6   10    15      52      105       175        481 ...
  3 | 2  10   20    52     179      418      1167       3498 ...
  4 | 1  15   52   141     801     2950      9792      47527 ...
  5 | 2  52  179   801    7770    34790    184318    1305358 ...
  6 | 4 105  418  2950   34790   204372   1593094   14720683 ...
  7 | 3 175 1167  9792  184318  1593094  16260853  231301551 ...
  8 | 4 481 3498 47527 1305358 14720683 231301551 4570906041 ...
  ...
		

Crossrefs

Rows 1..4 are A302655, A332392, A332393, A332394.
Main diagonal is A332391.

Formula

T(n,m) = T(m,n).

A303156 Number of minimum total dominating sets in the n X n king graph.

Original entry on oeis.org

0, 6, 8, 35, 1, 8684, 208, 604, 1192, 276696, 1362, 2, 2986, 32, 38772, 28520, 441984, 1024, 5047188
Offset: 1

Views

Author

Eric W. Weisstein, Apr 19 2018

Keywords

Crossrefs

Main diagonal of A303335.

Extensions

a(6)-a(19) from Andrew Howroyd, Apr 21 2018

A303378 Array read by antidiagonals: T(m,n) = total domination number of the m X n king graph.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 4, 3, 2, 2, 3, 4, 4, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 5, 6, 5, 4, 6, 6, 6, 6, 4, 5, 6, 6, 6, 5, 6, 7, 8, 7, 6, 5, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 6, 6, 6, 6, 7, 6, 6, 8, 9, 8, 9, 8, 9, 8, 6, 6, 7
Offset: 1

Views

Author

Andrew Howroyd, Apr 22 2018

Keywords

Examples

			Table begins:
=======================================================
m\n| 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16
---+---------------------------------------------------
1  | 1  2  2  2  3  4  4  4  5  6  6  6  7  8  8  8 ...
2  | 2  2  2  2  3  4  4  4  5  6  6  6  7  8  8  8 ...
3  | 2  2  2  2  3  4  4  4  5  6  6  6  7  8  8  8 ...
4  | 2  2  2  4  4  4  6  6  6  8  8  8 10 10 10 12 ...
5  | 3  3  3  4  5  6  7  8  9 10 11 12 13 14 15 16 ...
6  | 4  4  4  4  6  8  8  8 10 12 12 12 14 16 16 16 ...
7  | 4  4  4  6  7  8  9 10 11 12 14 14 16 17 18 19 ...
8  | 4  4  4  6  8  8 10 12 12 14 16 16 18 20 20 22 ...
9  | 5  5  5  6  9 10 11 12 15 16 17 18 21 22 23 24 ...
...
		

Crossrefs

Main diagonal is A302401.

A350817 Number of minimum total dominating sets in the 2 X n king graph.

Original entry on oeis.org

1, 6, 9, 4, 8, 89, 56, 16, 64, 780, 304, 64, 384, 5472, 1536, 256, 2048, 33920, 7424, 1024, 10240, 194304, 34816, 4096, 49152, 1053696, 159744, 16384, 229376, 5488640, 720896, 65536, 1048576, 27721728, 3211264, 262144, 4718592, 136642560, 14155776, 1048576
Offset: 1

Views

Author

Andrew Howroyd, Jan 17 2022

Keywords

Crossrefs

Row 2 of A303335.
Cf. A350816.

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 0, 12, 0, 0, 0, -48, 0, 0, 0, 64}, {1, 6, 9, 4, 8, 89, 56, 16, 64, 780, 304, 64, 384}, 40] (* Michael De Vlieger, Jan 19 2022 *)
  • PARI
    Vec((1 + 6*x + 9*x^2 + 4*x^3 - 4*x^4 + 17*x^5 - 52*x^6 - 32*x^7 + 16*x^8 + 64*x^10 + 64*x^11 - 64*x^12)/((1 - 2*x^2)^3*(1 + 2*x^2)^3) + O(x^40))
    
  • PARI
    a(n)={my(k=n\4); 4^k*if(n%2, if(n%4==1, (k==0) + 2*k, 5*k + 9), if(n%4==0, 1, (k + 1)*(41*k + 48)/8))}

Formula

a(n) = 12*a(n-4) - 48*a(n-8) + 64*a(n-12) for n > 13.
G.f.: x*(1 + 6*x + 9*x^2 + 4*x^3 - 4*x^4 + 17*x^5 - 52*x^6 - 32*x^7 + 16*x^8 + 64*x^10 + 64*x^11 - 64*x^12)/((1 - 2*x^2)^3*(1 + 2*x^2)^3).
a(4*k) = 4^k; a(4*k+1) = 2*k*4^k for k > 0; a(4*k+2) = (k + 1)*(41*k + 48)*4^k/8; a(4*k+3) = (5*k + 9)*4^k.
Showing 1-5 of 5 results.