cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A350819 Array read by antidiagonals: T(m,n) is the number of maximum independent sets in the 2m X 2n king graph.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 12, 12, 1, 1, 32, 79, 32, 1, 1, 80, 408, 408, 80, 1, 1, 192, 1847, 3600, 1847, 192, 1, 1, 448, 7698, 26040, 26040, 7698, 448, 1, 1, 1024, 30319, 166368, 281571, 166368, 30319, 1024, 1, 1, 2304, 114606, 976640, 2580754, 2580754, 976640, 114606, 2304, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 17 2022

Keywords

Comments

Number of ways to tile a (2m+1) X (2n+1) board with m*n 2 X 2 tiles and 2m+2n+1 1 X 1 tiles.
For m,n > 0, T(m,n) is the number of minimum dominating sets in the (3m-1) X (3n-1) king graph.

Examples

			Table begins:
=============================================
m\n | 0   1    2      3       4        5
----+----------------------------------------
  0 | 1   1    1      1       1        1 ...
  1 | 1   4   12     32      80      192 ...
  2 | 1  12   79    408    1847     7698 ...
  3 | 1  32  408   3600   26040   166368 ...
  4 | 1  80 1847  26040  281571  2580754 ...
  5 | 1 192 7698 166368 2580754 32572756 ...
  ...
		

Crossrefs

Formula

T(m,n) = T(n,m).
T(m,n) = A350818(2*m, 2*n) = A350815(3*m-1, 3*n-1).

A350820 Array read by antidiagonals: T(m,n) is the number of minimum dominating sets in the grid graph P_m X P_n.

Original entry on oeis.org

1, 2, 2, 1, 6, 1, 4, 3, 3, 4, 3, 12, 10, 12, 3, 1, 2, 29, 29, 2, 1, 8, 17, 1, 2, 1, 17, 8, 4, 2, 2, 52, 52, 2, 2, 4, 1, 20, 11, 92, 22, 92, 11, 20, 1, 13, 2, 46, 2, 13, 13, 2, 46, 2, 13, 5, 24, 1, 4, 3, 288, 3, 4, 1, 24, 5, 1, 2, 3, 324, 344, 34, 34, 344, 324, 3, 2, 1
Offset: 1

Views

Author

Andrew Howroyd, Jan 17 2022

Keywords

Comments

The domination number of the grid graphs is tabulated in A350823.

Examples

			Table begins:
===================================
m\n | 1  2  3  4   5   6  7   8
----+------------------------------
  1 | 1  2  1  4   3   1  8   4 ...
  2 | 2  6  3 12   2  17  2  20 ...
  3 | 1  3 10 29   1   2 11  46 ...
  4 | 4 12 29  2  52  92  2   4 ...
  5 | 3  2  1 52  22  13  3 344 ...
  6 | 1 17  2 92  13 288 34   2 ...
  7 | 8  2 11  2   3  34  2  34 ...
  8 | 4 20 46  4 344   2 34  52 ...
  ...
		

Crossrefs

Rows 1..4 are A347633, A347558, A350821, A350822.
Main diagonal is A347632.
Cf. A218354 (dominating sets), A286847 (minimal dominating sets), A303293, A350815, A350823.

Formula

T(m,n) = T(n,m).

A303335 Array read by antidiagonals: T(m,n) is the number of minimum total dominating sets in the m X n king graph.

Original entry on oeis.org

0, 1, 1, 2, 6, 2, 1, 9, 9, 1, 1, 4, 8, 4, 1, 4, 8, 1, 1, 8, 4, 3, 89, 3, 35, 3, 89, 3, 1, 56, 76, 9, 9, 76, 56, 1, 2, 16, 17, 1, 1, 1, 17, 16, 2, 9, 64, 1, 130, 9, 9, 130, 1, 64, 9, 4, 780, 6, 16, 60, 8684, 60, 16, 6, 780, 4, 1, 304, 229, 1, 89, 493, 493, 89, 1, 229, 304, 1
Offset: 1

Views

Author

Andrew Howroyd, Apr 21 2018

Keywords

Comments

The minimum size of a total dominating set is the total domination number A303378(m, n).

Examples

			Table begins:
=========================================
m\n| 1  2  3   4  5    6   7   8    9
---+-------------------------------------
1  | 0  1  2   1  1    4   3   1    2 ...
2  | 1  6  9   4  8   89  56  16   64 ...
3  | 2  9  8   1  3   76  17   1    6 ...
4  | 1  4  1  35  9    1 130  16    1 ...
5  | 1  8  3   9  1    9  60  89   45 ...
6  | 4 89 76   1  9 8684 493   1   50 ...
7  | 3 56 17 130 60  493 208  40   32 ...
8  | 1 16  1  16 89    1  40 604    1 ...
9  | 2 64  6   1 45   50  32   1 1192 ...
...
		

Crossrefs

Rows 1..2 are A302654, A350817.
Main diagonal is A303156.

A347633 Number of minimum dominating sets in the path graph P_n.

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 8, 4, 1, 13, 5, 1, 19, 6, 1, 26, 7, 1, 34, 8, 1, 43, 9, 1, 53, 10, 1, 64, 11, 1, 76, 12, 1, 89, 13, 1, 103, 14, 1, 118, 15, 1, 134, 16, 1, 151, 17, 1, 169, 18, 1, 188, 19, 1, 208, 20, 1, 229, 21, 1, 251, 22, 1, 274, 23, 1, 298, 24, 1, 323
Offset: 1

Views

Author

Eric W. Weisstein, Sep 09 2021

Keywords

Crossrefs

Row 1 of A350815 and A350820.

Programs

  • Mathematica
    Table[Piecewise[{{1, Mod[n, 3] == 0}, {(n^2 + 13 n + 4)/18, Mod[n, 3] == 1}, {(n + 4)/3, Mod[n, 3] == 2}}], {n, 20}]
    LinearRecurrence[{0, 0, 3, 0, 0, -3, 0, 0, 1}, {1, 2, 1, 4, 3, 1, 8, 4, 1}, 20]
    CoefficientList[Series[-(1 + 2 x + x^2 + x^3 - 3 x^4 - 2 x^5 - x^6 + x^7 + x^8)/((-1 + x)^3 (1 + x + x^2)^3), {x, 0, 20}], x]
  • PARI
    a(n)={if(n%3==0, 1, if(n%3==1, (n^2+13*n+4)/18,  (n+4)/3))} \\ Andrew Howroyd, Jan 18 2022

Formula

a(n) = 1 for n = 0 (mod 3)
(n^2+13*n+4)/18 for n = 1 (mod 3)
(n+4)/3 for n = 2 (mod 3).
a(n) = 3*a(n-3)-3*a(n-6)+a(n-9) for n > 9.
G.f.: -(x*(1+2*x+x^2+x^3-3*x^4-2*x^5-x^6+x^7+x^8))/((-1+x)^3*(1+x+x^2)^3).

A350816 Number of minimum dominating sets in the 2 X n king graph.

Original entry on oeis.org

2, 4, 2, 16, 12, 4, 64, 32, 8, 208, 80, 16, 608, 192, 32, 1664, 448, 64, 4352, 1024, 128, 11008, 2304, 256, 27136, 5120, 512, 65536, 11264, 1024, 155648, 24576, 2048, 364544, 53248, 4096, 843776, 114688, 8192, 1933312, 245760, 16384, 4390912, 524288, 32768
Offset: 1

Views

Author

Andrew Howroyd, Jan 17 2022

Keywords

Crossrefs

Programs

  • PARI
    Vec(2*(1 - x)*(1 + 3*x + 4*x^2 + 6*x^3 - 4*x^5 - 8*x^6 - 4*x^7)/(1 - 2*x^3)^3 + O(x^45))
    
  • PARI
    a(n) = {my(t=n\3); 2^t*if(n%3==0, 1, if(n%3==1, t^2 + 5*t + 2, 2*t + 4))}

Formula

a(n) = 6*a(n-3) - 12*a(n-6) + 8*a(n-9) for n > 9.
G.f.: 2*x*(1 - x)*(1 + 3*x + 4*x^2 + 6*x^3 - 4*x^5 - 8*x^6 - 4*x^7)/(1 - 2*x^3)^3.
a(3*n) = 2^n; a(3*n+1) = (n^2 + 5*n + 2)*2^n; a(3*n+2) = (n + 2)*2^(n+1).
a(3*n) = A000079(n); a(3*n+1) = A076616(n+3); a(3*n+2) = A001787(n+2).

A347554 Number of minimum dominating sets in the n X n king graph.

Original entry on oeis.org

1, 4, 1, 256, 79, 1, 243856, 3600, 1, 581571283, 281585, 1, 2722291223553, 32581328, 1, 21706368614058886, 5112264019, 1, 268740319616196074546, 1028516654620, 1, 4839916638142874877046813
Offset: 1

Views

Author

Eric W. Weisstein, Sep 06 2021

Keywords

Comments

a(3*n) = 1 for all n, since the 3n X 3n king graph has domination number n^2 and the only way to achieve this is if each of the n^2 kings is placed in the middle of its own 3 X 3 square.

Crossrefs

Main diagonal of A350815.
Cf. A075561 (domination number of the n X n king graph), A133791, A286881.

Extensions

a(7)-a(12) from Andrew Howroyd, Jan 17 2022
a(13)-a(22) from Stephan Mertens, Aug 18 2024

A350818 Array read by antidiagonals: T(m,n) is the number of maximum independent sets in the m X n king graph.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 3, 4, 4, 3, 1, 1, 1, 12, 1, 12, 1, 1, 1, 4, 8, 9, 9, 8, 4, 1, 1, 1, 32, 1, 79, 1, 32, 1, 1, 1, 5, 16, 16, 27, 27, 16, 16, 5, 1, 1, 1, 80, 1, 408, 1, 408, 1, 80, 1, 1, 1, 6, 32, 25, 81, 64, 64, 81, 25, 32, 6, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 17 2022

Keywords

Comments

The maximum size of an independent set is the independence number which in the case of an m X n king graph is given by ceiling(m/2)*ceiling(n/2).

Examples

			Table begins:
=============================================
m\n | 0 1  2  3    4   5     6   7      8
----+----------------------------------------
  0 | 1 1  1  1    1   1     1   1      1 ...
  1 | 1 1  2  1    3   1     4   1      5 ...
  2 | 1 2  4  4   12   8    32  16     80 ...
  3 | 1 1  4  1    9   1    16   1     25 ...
  4 | 1 3 12  9   79  27   408  81   1847 ...
  5 | 1 1  8  1   27   1    64   1    125 ...
  6 | 1 4 32 16  408  64  3600 256  26040 ...
  7 | 1 1 16  1   81   1   256   1    625 ...
  8 | 1 5 80 25 1847 125 26040 625 281571 ...
  ...
		

Crossrefs

Formula

T(m,n) = T(n,m).
T(2*m+1, 2*n+1) = 1.
T(2*m, 2*n+1) = (1+m)^(1+n).
T(2*m, 2*n) = A350819(m, n).
Showing 1-7 of 7 results.