cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A350815 Array read by antidiagonals: T(m,n) is the number of minimum dominating sets in the m X n king graph.

Original entry on oeis.org

1, 2, 2, 1, 4, 1, 4, 2, 2, 4, 3, 16, 1, 16, 3, 1, 12, 4, 4, 12, 1, 8, 4, 3, 256, 3, 4, 8, 4, 64, 1, 144, 144, 1, 64, 4, 1, 32, 8, 16, 79, 16, 8, 32, 1, 13, 8, 4, 4096, 9, 9, 4096, 4, 8, 13, 5, 208, 1, 1024, 1656, 1, 1656, 1024, 1, 208, 5, 1, 80, 13, 64, 408, 64, 64, 408, 64, 13, 80, 1
Offset: 1

Views

Author

Andrew Howroyd, Jan 17 2022

Keywords

Comments

The minimum size of a dominating set is the domination number which in the case of an m X n king graph is given by (ceiling(m/3) * ceiling(n/3)).

Examples

			Table begins:
============================================
m\n | 1  2  3    4    5   6      7     8
----+---------------------------------------
  1 | 1  2  1    4    3   1      8     4 ...
  2 | 2  4  2   16   12   4     64    32 ...
  3 | 1  2  1    4    3   1      8     4 ...
  4 | 4 16  4  256  144  16   4096  1024 ...
  5 | 3 12  3  144   79   9   1656   408 ...
  6 | 1  4  1   16    9   1     64    16 ...
  7 | 8 64  8 4096 1656  64 243856 29744 ...
  8 | 4 32  4 1024  408  16  29744  3600 ...
     ...
		

Crossrefs

Rows 1..3 are A347633, A350816, A347633.
Main diagonal is A347554.
Cf. A075561, A218663 (dominating sets), A286849 (minimal dominating sets), A303335, A350818, A350819.

Formula

T(n,m) = T(m,n).
T(3*m, 3*n) = 1; T(3*m+1, 3*n) = (m^2 + 5*m + 2)^n; T(3*m+2, 3*n) = (m+2)^n.
T(3*m-1, 3*n-1) = A350819(m, n).

A347633 Number of minimum dominating sets in the path graph P_n.

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 8, 4, 1, 13, 5, 1, 19, 6, 1, 26, 7, 1, 34, 8, 1, 43, 9, 1, 53, 10, 1, 64, 11, 1, 76, 12, 1, 89, 13, 1, 103, 14, 1, 118, 15, 1, 134, 16, 1, 151, 17, 1, 169, 18, 1, 188, 19, 1, 208, 20, 1, 229, 21, 1, 251, 22, 1, 274, 23, 1, 298, 24, 1, 323
Offset: 1

Views

Author

Eric W. Weisstein, Sep 09 2021

Keywords

Crossrefs

Row 1 of A350815 and A350820.

Programs

  • Mathematica
    Table[Piecewise[{{1, Mod[n, 3] == 0}, {(n^2 + 13 n + 4)/18, Mod[n, 3] == 1}, {(n + 4)/3, Mod[n, 3] == 2}}], {n, 20}]
    LinearRecurrence[{0, 0, 3, 0, 0, -3, 0, 0, 1}, {1, 2, 1, 4, 3, 1, 8, 4, 1}, 20]
    CoefficientList[Series[-(1 + 2 x + x^2 + x^3 - 3 x^4 - 2 x^5 - x^6 + x^7 + x^8)/((-1 + x)^3 (1 + x + x^2)^3), {x, 0, 20}], x]
  • PARI
    a(n)={if(n%3==0, 1, if(n%3==1, (n^2+13*n+4)/18,  (n+4)/3))} \\ Andrew Howroyd, Jan 18 2022

Formula

a(n) = 1 for n = 0 (mod 3)
(n^2+13*n+4)/18 for n = 1 (mod 3)
(n+4)/3 for n = 2 (mod 3).
a(n) = 3*a(n-3)-3*a(n-6)+a(n-9) for n > 9.
G.f.: -(x*(1+2*x+x^2+x^3-3*x^4-2*x^5-x^6+x^7+x^8))/((-1+x)^3*(1+x+x^2)^3).

A350817 Number of minimum total dominating sets in the 2 X n king graph.

Original entry on oeis.org

1, 6, 9, 4, 8, 89, 56, 16, 64, 780, 304, 64, 384, 5472, 1536, 256, 2048, 33920, 7424, 1024, 10240, 194304, 34816, 4096, 49152, 1053696, 159744, 16384, 229376, 5488640, 720896, 65536, 1048576, 27721728, 3211264, 262144, 4718592, 136642560, 14155776, 1048576
Offset: 1

Views

Author

Andrew Howroyd, Jan 17 2022

Keywords

Crossrefs

Row 2 of A303335.
Cf. A350816.

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 0, 12, 0, 0, 0, -48, 0, 0, 0, 64}, {1, 6, 9, 4, 8, 89, 56, 16, 64, 780, 304, 64, 384}, 40] (* Michael De Vlieger, Jan 19 2022 *)
  • PARI
    Vec((1 + 6*x + 9*x^2 + 4*x^3 - 4*x^4 + 17*x^5 - 52*x^6 - 32*x^7 + 16*x^8 + 64*x^10 + 64*x^11 - 64*x^12)/((1 - 2*x^2)^3*(1 + 2*x^2)^3) + O(x^40))
    
  • PARI
    a(n)={my(k=n\4); 4^k*if(n%2, if(n%4==1, (k==0) + 2*k, 5*k + 9), if(n%4==0, 1, (k + 1)*(41*k + 48)/8))}

Formula

a(n) = 12*a(n-4) - 48*a(n-8) + 64*a(n-12) for n > 13.
G.f.: x*(1 + 6*x + 9*x^2 + 4*x^3 - 4*x^4 + 17*x^5 - 52*x^6 - 32*x^7 + 16*x^8 + 64*x^10 + 64*x^11 - 64*x^12)/((1 - 2*x^2)^3*(1 + 2*x^2)^3).
a(4*k) = 4^k; a(4*k+1) = 2*k*4^k for k > 0; a(4*k+2) = (k + 1)*(41*k + 48)*4^k/8; a(4*k+3) = (5*k + 9)*4^k.
Showing 1-3 of 3 results.