A350820 Array read by antidiagonals: T(m,n) is the number of minimum dominating sets in the grid graph P_m X P_n.
1, 2, 2, 1, 6, 1, 4, 3, 3, 4, 3, 12, 10, 12, 3, 1, 2, 29, 29, 2, 1, 8, 17, 1, 2, 1, 17, 8, 4, 2, 2, 52, 52, 2, 2, 4, 1, 20, 11, 92, 22, 92, 11, 20, 1, 13, 2, 46, 2, 13, 13, 2, 46, 2, 13, 5, 24, 1, 4, 3, 288, 3, 4, 1, 24, 5, 1, 2, 3, 324, 344, 34, 34, 344, 324, 3, 2, 1
Offset: 1
Examples
Table begins: =================================== m\n | 1 2 3 4 5 6 7 8 ----+------------------------------ 1 | 1 2 1 4 3 1 8 4 ... 2 | 2 6 3 12 2 17 2 20 ... 3 | 1 3 10 29 1 2 11 46 ... 4 | 4 12 29 2 52 92 2 4 ... 5 | 3 2 1 52 22 13 3 344 ... 6 | 1 17 2 92 13 288 34 2 ... 7 | 8 2 11 2 3 34 2 34 ... 8 | 4 20 46 4 344 2 34 52 ... ...
Links
- Stephan Mertens, Table of n, a(n) for n = 1..946 (first 276 terms from Andrew Howroyd)
- Stephan Mertens, Domination Polynomials of the Grid, the Cylinder, the Torus, and the King Graph, arXiv:2408.08053 [math.CO], Aug 2024.
- Eric Weisstein's World of Mathematics, Grid Graph
- Eric Weisstein's World of Mathematics, Minimum Dominating Set
Crossrefs
Formula
T(m,n) = T(n,m).
Comments