A303162 Number of minimal total dominating sets in the n-Moebius ladder.
0, 6, 9, 14, 25, 57, 196, 222, 441, 851, 1936, 3281, 6084, 12662, 24964, 48830, 93636, 188265, 369664, 725859, 1423249, 2798582, 5503716, 10790049, 21206025, 41601462, 81703521, 160396110, 314991504, 618413702, 1214104336, 2384319102, 4681706929, 9192838950
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Eric Weisstein's World of Mathematics, Minimal Total Dominating Set.
- Eric Weisstein's World of Mathematics, Moebius Ladder.
- Index entries for linear recurrences with constant coefficients, signature (2, -2, 3, 4, -7, 5, 0, -21, 39, -24, 21, 33, -36, 63, -33, 0, 33, -63, 36, -33, -21, 24, -39, 21, 0, -5, 7, -4, -3, 2, -2, 1).
Programs
-
Mathematica
Table[3 - 3 (-1)^n + RootSum[1 - 2 # - #^2 + 3 #^3 - #^4 - 2 #^5 + #^6 &, #^n &] - RootSum[1 - 4 # + 10 #^2 - 19 #^3 + 28 #^4 - 34 #^5 + 37 #^6 - 34 #^7 + 28 #^8 - 19 #^9 + 10 #^10 - 4 #^11 + #^12 &, #^n &] + RootSum[1 + 4 # + 10 #^2 + 19 #^3 + 28 #^4 + 34 #^5 + 37 #^6 + 34 #^7 + 28 #^8 + 19 #^9 + 10 #^10 + 4 #^11 + #^12 &, #^n &], {n, 200}] LinearRecurrence[{2, -2, 3, 4, -7, 5, 0, -21, 39, -24, 21, 33, -36, 63, -33, 0, 33, -63, 36, -33, -21, 24, -39, 21, 0, -5, 7, -4, -3, 2, -2, 1}, {0, 6, 9, 14, 25, 57, 196, 222, 441, 851, 1936, 3281, 6084, 12662, 24964, 48830, 93636, 188265, 369664, 725859, 1423249, 2798582, 5503716, 10790049, 21206025, 41601462, 81703521, 160396110,314991504, 618413702, 1214104336, 2384319102}, 200] Rest @ CoefficientList[Series[x^2 (6 - 3 x + 8 x^2 - 3 x^3 - 16 x^4 + 96 x^5 - 154 x^6 + 171 x^7 - 172 x^8 - 105 x^9 + 74 x^10 - 280 x^11 - 8 x^12 + 91 x^13 - 508 x^14 + 289 x^15 - 386 x^16 - 64 x^17 - 124 x^18 - 231 x^19 - 28 x^20 - 63 x^21 - 28 x^22 + 96 x^23 - 46 x^24 + 39 x^25 - 16 x^26 - 21 x^27 + 18 x^28 - 12 x^29 + 6 x^30)/((1 - x) (1 + x) (1 - 2 x - x^2 + 3 x^3 - x^4 - 2 x^5 + x^6) (1 - 4 x + 10 x^2 - 19 x^3 + 28 x^4 - 34 x^5 + 37 x^6 - 34 x^7 + 28 x^8 - 19 x^9 + 10 x^10 - 4 x^11 + x^12) (1 + 4 x + 10 x^2 + 19 x^3 + 28 x^4 + 34 x^5 + 37 x^6 + 34 x^7 + 28 x^8 + 19 x^9 + 10 x^10 + 4 x^11 + x^12)), {x, 0, 200}], x]
Formula
G.f.: x^2*(6 - 3*x + 8*x^2 - 3*x^3 - 16*x^4 + 96*x^5 - 154*x^6 + 171*x^7 - 172*x^8 - 105*x^9 + 74*x^10 - 280*x^11 - 8*x^12 + 91*x^13 - 508*x^14 + 289*x^15 - 386*x^16 - 64*x^17 - 124*x^18 - 231*x^19 - 28*x^20 - 63*x^21 - 28*x^22 + 96*x^23 - 46*x^24 + 39*x^25 - 16*x^26 - 21*x^27 + 18*x^28 - 12*x^29 + 6*x^30)/((1 - x)*(1 + x)*(1 - 2*x - x^2 + 3*x^3 - x^4 - 2*x^5 + x^6)*(1 - 4*x + 10*x^2 - 19*x^3 + 28*x^4 - 34*x^5 + 37*x^6 - 34*x^7 + 28*x^8 - 19*x^9 + 10*x^10 - 4*x^11 + x^12)*(1 + 4*x + 10*x^2 + 19*x^3 + 28*x^4 + 34*x^5 + 37*x^6 + 34*x^7 + 28*x^8 + 19*x^9 + 10*x^10 + 4*x^11 + x^12)). - Andrew Howroyd, Apr 19 2018
Extensions
a(1)-a(2) and terms a(11) and beyond from Andrew Howroyd, Apr 19 2018
Comments