cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A290429 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of (Sum_{j>=0} x^(j*(j+1)*(j+2)/6))^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 0, 0, 1, 4, 3, 0, 1, 0, 1, 5, 6, 1, 2, 0, 0, 1, 6, 10, 4, 3, 2, 0, 0, 1, 7, 15, 10, 5, 6, 0, 0, 0, 1, 8, 21, 20, 10, 12, 3, 0, 0, 0, 1, 9, 28, 35, 21, 21, 12, 0, 1, 0, 0, 1, 10, 36, 56, 42, 36, 30, 4, 3, 0, 1, 0, 1, 11, 45, 84, 78, 63, 61, 20, 6, 3, 2, 0, 0, 1, 12, 55, 120, 135, 112, 112, 60, 15, 12, 3, 2, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 31 2017

Keywords

Comments

A(n,k) is the number of ways of writing n as a sum of k tetrahedral (or triangular pyramidal) numbers (A000292).

Examples

			Square array begins:
1,  1,  1,  1,   1,   1,  ...
0,  1,  2,  3,   4,   5,  ...
0,  0,  1,  3,   6,  10,  ...
0,  0,  0,  1,   4,  10,  ...
0,  1,  2,  3,   5,  10,  ...
0,  0,  2,  6,  12,  21,  ...
		

Crossrefs

Cf. A000007 (column 0), A023533 (column 1), A282172 (column 5).
Main diagonal gives A303170.
Similar to, but different from, A045847.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[x^(i (i + 1) (i + 2)/6), {i, 0, n}]^k, {x, 0, n}]][j - n], {j, 0, 13}, {n, 0, j}] // Flatten

Formula

G.f. of column k: (Sum_{j>=0} x^(j*(j+1)*(j+2)/6))^k.

A338586 Number of partitions of the n-th tetrahedral number into exactly n positive tetrahedral numbers.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 2, 5, 5, 20, 35, 75, 154, 336, 730, 1570, 3394, 7339, 16085, 35015, 76269, 164821, 359704, 782004, 1696804, 3668860, 7953962, 17184203, 37093184, 79825297, 171824175, 368838299, 790404448, 1690297309, 3610816466, 7696144659, 16374004711, 34766160358
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 08 2020

Keywords

Examples

			The 6th tetrahedral number is 56 and 56 = 1 + 1 + 4 + 10 + 20 + 20 = 4 + 4 + 4 + 4 + 20 + 20, so a(6) = 2.
		

Crossrefs

Formula

a(n) = [x^A000292(n) y^n] Product_{j>=1} 1 / (1 - y*x^A000292(j)).

A303172 Number of ordered ways of writing n as a sum of n square pyramidal numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 31, 106, 281, 631, 1306, 2806, 6931, 19306, 55070, 150816, 391161, 977501, 2426071, 6141865, 16000186, 42465571, 112950916, 297793651, 776866355, 2015237231, 5233754306, 13668689206, 35908153534, 94633042267, 249398115466, 656105299636, 1723150461561
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2018

Keywords

Crossrefs

Main diagonal of A290430.

Programs

  • Mathematica
    Table[SeriesCoefficient[Sum[x^(k (k + 1) (2 k + 1)/6), {k, 0, n}]^n, {x, 0, n}], {n, 0, 32}]

Formula

a(n) = [x^n] (Sum_{k>=0} x^(k*(k+1)*(2*k+1)/6))^n.
a(n) = A290430(n,n).

A338778 Number of ordered ways of writing n-th tetrahedral number as a sum of n positive tetrahedral numbers.

Original entry on oeis.org

1, 1, 0, 0, 0, 20, 195, 1890, 6286, 94584, 1065120, 12345432, 194450586, 2844976135, 44569913570, 740023110855, 13144353701940, 241663182769494, 4707408836458200, 95865898167054186, 2038122531703155798, 45103282424247100962, 1037559653596650520776, 24776005985596646165127
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 08 2020

Keywords

Examples

			The 5th tetrahedral number is 35 and 35 = 1 + 4 + 10 + 10 + 10 (20 permutations), so a(5) = 20.
		

Crossrefs

Formula

a(n) = [x^A000292(n)] (Sum_{j>=1} x^A000292(j))^n.
Showing 1-4 of 4 results.