cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A303170 Number of ordered ways of writing n as a sum of n tetrahedral numbers.

Original entry on oeis.org

1, 1, 1, 1, 5, 21, 61, 141, 309, 757, 2111, 6051, 16721, 44617, 118301, 318501, 871781, 2400741, 6596953, 18067329, 49460555, 135697395, 373271515, 1028451579, 2835353337, 7819016521, 21572619771, 59562583471, 164586609409, 455114644297, 1259191262441, 3485551053561
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2018

Keywords

Crossrefs

Main diagonal of A290429.

Programs

  • Mathematica
    Table[SeriesCoefficient[Sum[x^(k (k + 1) (k + 2)/6), {k, 0, n}]^n, {x, 0, n}], {n, 0, 31}]

Formula

a(n) = [x^n] (Sum_{k>=0} x^(k*(k+1)*(k+2)/6))^n.
a(n) = A290429(n,n).

A290430 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of (Sum_{j>=0} x^(j*(j+1)*(2*j+1)/6))^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 0, 0, 1, 4, 3, 0, 0, 0, 1, 5, 6, 1, 0, 1, 0, 1, 6, 10, 4, 0, 2, 0, 0, 1, 7, 15, 10, 1, 3, 2, 0, 0, 1, 8, 21, 20, 5, 4, 6, 0, 0, 0, 1, 9, 28, 35, 15, 6, 12, 3, 0, 0, 0, 1, 10, 36, 56, 35, 12, 20, 12, 0, 0, 0, 0, 1, 11, 45, 84, 70, 28, 31, 30, 4, 0, 1, 0, 0, 1, 12, 55, 120, 126, 64, 49, 60, 20, 0, 3, 0, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 31 2017

Keywords

Comments

A(n,k) is the number of ways of writing n as a sum of k square pyramidal numbers (A000330).

Examples

			Square array begins:
1,  1,  1,  1,  1,   1,  ...
0,  1,  2,  3,  4,   5,  ...
0,  0,  1,  3,  6,  10,  ...
0,  0,  0,  1,  4,  10,  ...
0,  0,  0,  0,  1,   5,  ...
0,  1,  2,  3,  4,   6,  ...
		

Crossrefs

Cf. A000007 (column 0), A253903 (column 1), A282173 (column 6).
Main diagonal gives A303172.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[x^(i (i + 1) (2 i + 1)/6), {i, 0, n}]^k, {x, 0, n}]][j - n], {j, 0, 13}, {n, 0, j}] // Flatten

Formula

G.f. of column k: (Sum_{j>=0} x^(j*(j+1)*(2*j+1)/6))^k.
Showing 1-2 of 2 results.