A303174 a(n) = [x^n] Product_{k=1..n} 1/(1 + x^k)^(n-k+1).
1, -1, 2, -5, 18, -60, 189, -601, 1967, -6544, 21872, -73247, 246080, -829924, 2808357, -9527485, 32389671, -110316862, 376372802, -1286063899, 4400499380, -15075608840, 51704898623, -177513230200, 610007283817, -2098029341745, 7221561430933, -24875274224531
Offset: 0
Keywords
Examples
a(0) = 1; a(1) = [x^1] 1/(1 + x) = -1; a(2) = [x^2] 1/((1 + x)^2*(1 + x^2)) = 2; a(3) = [x^3] 1/((1 + x)^3*(1 + x^2)^2*(1 + x^3)) = -5; a(4) = [x^4] 1/((1 + x)^4*(1 + x^2)^3*(1 + x^3)^2*(1 + x^4)) = 18; a(5) = [x^5] 1/((1 + x)^5*(1 + x^2)^4*(1 + x^3)^3*(1 + x^4)^2*(1 + x^5)) = -60, etc. ... The table of coefficients of x^k in expansion of Product_{k=1..n} 1/(1 + x^k)^(n-k+1) begins: n = 0: (1), 0, 0, 0, 0, 0, ... n = 1: 1, (-1), 1, -1, 1, -1, ... n = 2: 1, -2, (2), -2, 3, -4, ... n = 3: 1, -3, 4, (-5), 9, -14, ... n = 4: 1, -4, 7, -10, (18), -30, ... n = 5: 1, -5, 11, -18, 33, (-60), ...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..500
Programs
-
Mathematica
Table[SeriesCoefficient[Product[1/(1 + x^k)^(n - k + 1), {k, 1, n}], {x, 0, n}], {n, 0, 27}]
Formula
a(n) ~ (-1)^n * c * d^n / sqrt(n), where d = A318204 = 3.50975432794970334043727352337... and c = 0.2457469629428839220188283... - Vaclav Kotesovec, Aug 21 2018