cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A303175 a(n) = [x^n] Product_{k=1..n} 1/(1 - (n - k + 1)*x^k).

Original entry on oeis.org

1, 1, 5, 34, 322, 3803, 55297, 953815, 19086057, 434477488, 11086102633, 313318606066, 9714265351819, 327788649292844, 11957321196905337, 468872400449456885, 19666225828334583690, 878560858388253803180, 41645712575272737701666, 2087686693048676581394052
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2018

Keywords

Examples

			a(0) = 1;
a(1) = [x^1] 1/(1 - x) = 1;
a(2) = [x^2] 1/((1 - 2*x)*(1 - x^2)) = 5;
a(3) = [x^3] 1/((1 - 3*x)*(1 - 2*x^2)*(1 - x^3)) = 34;
a(4) = [x^4] 1/((1 - 4*x)*(1 - 3*x^2)*(1 - 2*x^3)*(1 - x^4)) = 322;
a(5) = [x^5] 1/((1 - 5*x)*(1 - 4*x^2)*(1 - 3*x^3)*(1 - 2*x^4)*(1 - x^5)) = 3803, etc.
...
The table of coefficients of x^k in expansion of Product_{k=1..n} 1/(1 - (n - k + 1)*x^k) begins:
n = 0: (1), 0,   0,    0,    0,     0,  ...
n = 1:  1, (1),  1,    1,    1,     1,  ...
n = 2:  1,  2,  (5),  10,   21,    42,  ...
n = 3:  1,  3,  11,  (34), 106,   320,  ...
n = 4:  1,  4,  19,   78, (322), 1294,  ...
n = 5:  1,  5,  29,  148,  758, (3803), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - (n - k + 1) x^k), {k, 1, n}], {x, 0, n}], {n, 0, 19}]

Formula

a(n) ~ n^n * (1 + 1/n + 1/n^2 - 1/n^3 - 3/n^4 - 8/n^5 - 7/n^6 - 13/n^7 + 2/n^8 - 3/n^9 + 31/n^10 + 21/n^11 + 81/n^12 + 2/n^13 + 152/n^14 - 114/n^15 + 173/n^16 - 341/n^17 + 260/n^18 - 936/n^19 + 861/n^20 - 2187/n^21 + 2630/n^22 - 4551/n^23 + 6211/n^24 - 8866/n^25 + 14889/n^26 - 22374/n^27 + 38490/n^28 - 55911/n^29 + 87688/n^30 - ...). - Vaclav Kotesovec, Aug 21 2018

A303188 a(n) = [x^n] Product_{k=1..n} (1 + (n - k + 1)*x^k).

Original entry on oeis.org

1, 1, 1, 7, 9, 23, 148, 221, 526, 1040, 6767, 9664, 23456, 43943, 91363, 499028, 736410, 1650395, 3107540, 6210372, 10819270, 57864166, 80663444, 179915133, 324882691, 640398244, 1087149284, 2039724322, 9121580902, 12913282685, 27250167385, 48645989650, 92634730208, 156124357449
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2018

Keywords

Examples

			a(0) = 1;
a(1) = [x^1] (1 + x) = 1;
a(2) = [x^2] (1 + 2*x)*(1 + x^2) = 1;
a(3) = [x^3] (1 + 3*x)*(1 + 2*x^2)*(1 + x^3) = 7;
a(4) = [x^4] (1 + 4*x)*(1 + 3*x^2)*(1 + 2*x^3)*(1 + x^4) = 9;
a(5) = [x^5] (1 + 5*x)*(1 + 4*x^2)*(1 + 3*x^3)*(1 + 2*x^4)*(1 + x^5) = 23, etc.
...
The table of coefficients of x^k in expansion of Product_{k=1..n} (1 + (n - k + 1)*x^k) begins:
n = 0: (1), 0,  0,   0,   0,   0,  ...
n = 1:  1, (1), 0,   0,   0,   0,  ...
n = 2:  1,  2, (1),  2,   0,   0   ...
n = 3:  1,  3,  2,  (7),  3,   2,  ...
n = 4:  1,  4,  3,  14,  (9), 10,  ...
n = 5:  1,  5,  4,  23,  17, (23), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + (n - k + 1) x^k), {k, 1, n}], {x, 0, n}], {n, 0, 33}]

A303189 a(n) = [x^n] Product_{k=1..n} (1 - (n - k + 1)*x^k).

Original entry on oeis.org

1, -1, -1, 5, 7, 21, -94, -117, -404, -840, 3541, 4536, 14412, 31313, 72175, -249424, -262828, -930639, -1895460, -4441316, -8085972, 24112570, 26214408, 87131883, 180197979, 411759028, 748154122, 1525043990, -3554837744, -3210408245, -11955482059, -23817949142, -55221348072
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2018

Keywords

Examples

			a(0) = 1;
a(1) = [x^1] (1 - x) = -1;
a(2) = [x^2] (1 - 2*x)*(1 - x^2) = -1;
a(3) = [x^3] (1 - 3*x)*(1 - 2*x^2)*(1 - x^3) = 5;
a(4) = [x^4] (1 - 4*x)*(1 - 3*x^2)*(1 - 2*x^3)*(1 - x^4) = 7;
a(5) = [x^5] (1 - 5*x)*(1 - 4*x^2)*(1 - 3*x^3)*(1 - 2*x^4)*(1 - x^5) = 21, etc.
...
The table of coefficients of x^k in expansion of Product_{k=1..n} (1 - (n - k + 1)*x^k) begins:
n = 0: (1),  0,   0,   0,   0,   0,  ...
n = 1:  1, (-1),  0,   0,   0,   0,  ...
n = 2:  1,  -2, (-1),  2,   0,   0   ...
n = 3:  1,  -3,  -2,  (5),  3,   2,  ...
n = 4:  1,  -4,  -3,  10,  (7), 10,  ...
n = 5:  1,  -5,  -4,  17,  13, (21), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 - (n - k + 1) x^k), {k, 1, n}], {x, 0, n}], {n, 0, 32}]
Showing 1-3 of 3 results.