A303204 Number of permutations p of [n] such that 0p has a nonincreasing jump sequence beginning with ceiling(n/2).
1, 1, 1, 2, 5, 12, 36, 98, 327, 988, 3392, 10872, 38795, 129520, 469662, 1609176, 5935728, 20786804, 77416352, 274792342, 1035050705, 3719296036, 14094000938, 51119572738, 195075365778, 712918642042, 2734475097609, 10055531355652, 38747262233793
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(b(sort([u-j, o+j-1])[], j), j=1..min(t, u))+ add(b(sort([u+j-1, o-j])[], j), j=1..min(t, o))) end: a:= n-> `if`(n=0, 1, (j-> b(0, n, j)-b(0, n, j-1))(ceil(n/2))): seq(a(n), n=0..30);
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[b[Sequence @@ Sort[{u-j, o+j-1}], j], {j, Min[t, u]}]+ Sum[b[Sequence @@ Sort[{u+j-1, o-j}], j], {j, Min[t, o]}]]; a[n_] := If[n == 0, 1, Function[j, b[0, n, j] - b[0, n, j-1]][Ceiling[n/2]]]; Table[a[n], {n, 0, 30}]; (* Jean-François Alcover, Aug 30 2021, after Alois P. Heinz *)
Formula
a(n) = A291684(n,ceiling(n/2)).
Comments