A303209 Number of total dominating sets in the n X n rook complement graph.
0, 1, 334, 63935, 33543096, 68719407273, 562949953031502, 18446744073707484655, 2417851639229258338871776, 1267650600228229401496650964865, 2658455991569831745807614120307390270, 22300745198530623141535718272648360299110799
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..50
- Eric Weisstein's World of Mathematics, Rook Complement Graph
- Eric Weisstein's World of Mathematics, Total Dominating Set
Programs
-
PARI
a(n) = {2^(n^2) - 2*n*(2^n - 1) - 2*n^2*(2^(n-1)-1)^2 + n^2*(n-1)^2/2 + n^2 - 1} \\ Andrew Howroyd, Apr 20 2018
Formula
a(n) = 2^(n^2) - 2*n*(2^n - 1) - 2*n^2*(2^(n-1)-1)^2 + n^2*(n-1)^2/2 + n^2 - 1. - Andrew Howroyd, Apr 20 2018
Extensions
Terms a(6) and beyond from Andrew Howroyd, Apr 20 2018
Comments