cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303218 A(n,k) is the n-th Fibonacci number with exactly k distinct prime factors; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

2, 21, 3, 610, 34, 5, 6765, 987, 55, 8, 832040, 46368, 2584, 144, 13, 102334155, 14930352, 196418, 10946, 377, 89, 190392490709135, 4807526976, 267914296, 317811, 3524578, 4181, 233, 1548008755920, 37889062373143906, 86267571272, 701408733, 2178309, 9227465, 17711, 1597
Offset: 1

Views

Author

Alois P. Heinz, Apr 19 2018

Keywords

Examples

			Square array A(n,k) begins:
   2,   21,     610,        6765,      832040,        102334155, ...
   3,   34,     987,       46368,    14930352,       4807526976, ...
   5,   55,    2584,      196418,   267914296,      86267571272, ...
   8,  144,   10946,      317811,   701408733,     225851433717, ...
  13,  377, 3524578,     2178309,  1134903170,   10610209857723, ...
  89, 4181, 9227465, 32951280099, 12586269025, 8944394323791464, ...
		

Crossrefs

Column k=3 gives A137563.
Row n=1 gives: A060319.

Programs

  • Maple
    F:= combinat[fibonacci]: with(numtheory):
    A:= proc() local h, p, q; p, q:= proc() [] end, 2;
          proc(n, k)
            while nops(p(k))
    				
  • Mathematica
    nmax = 12(*rows*);
    maxIndex = 200; (* increase if message "part does not exist" *)
    nu[n_] := nu[n] = PrimeNu[Fibonacci[n]];
    col[k_] := Select[Range[maxIndex], nu[#] == k &];
    T = Array[col, nmax];
    A[n_, k_] := Fibonacci[T[[k, n]]];
    Table[A[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Feb 05 2021 *)

Formula

A(n,k) = A000045(A303217(n,k)).
A001221(A(n,k)) = k.