A303218 A(n,k) is the n-th Fibonacci number with exactly k distinct prime factors; square array A(n,k), n>=1, k>=1, read by antidiagonals.
2, 21, 3, 610, 34, 5, 6765, 987, 55, 8, 832040, 46368, 2584, 144, 13, 102334155, 14930352, 196418, 10946, 377, 89, 190392490709135, 4807526976, 267914296, 317811, 3524578, 4181, 233, 1548008755920, 37889062373143906, 86267571272, 701408733, 2178309, 9227465, 17711, 1597
Offset: 1
Examples
Square array A(n,k) begins: 2, 21, 610, 6765, 832040, 102334155, ... 3, 34, 987, 46368, 14930352, 4807526976, ... 5, 55, 2584, 196418, 267914296, 86267571272, ... 8, 144, 10946, 317811, 701408733, 225851433717, ... 13, 377, 3524578, 2178309, 1134903170, 10610209857723, ... 89, 4181, 9227465, 32951280099, 12586269025, 8944394323791464, ...
Links
- Alois P. Heinz, Antidiagonals n = 1..18, flattened
Programs
-
Maple
F:= combinat[fibonacci]: with(numtheory): A:= proc() local h, p, q; p, q:= proc() [] end, 2; proc(n, k) while nops(p(k))
-
Mathematica
nmax = 12(*rows*); maxIndex = 200; (* increase if message "part does not exist" *) nu[n_] := nu[n] = PrimeNu[Fibonacci[n]]; col[k_] := Select[Range[maxIndex], nu[#] == k &]; T = Array[col, nmax]; A[n_, k_] := Fibonacci[T[[k, n]]]; Table[A[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Feb 05 2021 *)