cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303226 Number of minimal total dominating sets in the n-gear graph.

Original entry on oeis.org

0, 6, 12, 6, 30, 30, 56, 110, 156, 306, 506, 870, 1560, 2652, 4692, 8190, 14280, 25122, 43890, 77006, 135056, 236682, 415380, 728462, 1278030, 2242506, 3934272, 6903756, 12113880, 21256710, 37301556, 65456190, 114864806, 201569006, 353722056, 620732310
Offset: 1

Views

Author

Eric W. Weisstein, Apr 20 2018

Keywords

Comments

Sequence extrapolated to n=1 using recurrence. - Andrew Howroyd, Apr 20 2018

Crossrefs

Programs

  • Mathematica
    Table[RootSum[-1 - # + #^3 &, #^n &] + RootSum[-1 + # - 2 #^2 + #^3 &, #^n &] + 2 RootSum[-1 + #^2 + #^3 &, #^(n + 2) (1 + #) &], {n, 20}]
    LinearRecurrence[{1, 2, 1, -3, -1, -1, 0, 0, 1}, {0, 6, 12, 6, 30, 30, 56, 110, 156}, 20]
    CoefficientList[Series[-2 x (3 + 3 x - 9 x^2 - 3 x^3 - 3 x^4 + x^5 + 6 x^7)/(-1 + x + 2 x^2 + x^3 - 3 x^4 - x^5 - x^6 + x^9), {x, 0, 20}], x]
  • PARI
    concat([0], Vec(2*(3 + 3*x - 9*x^2 - 3*x^3 - 3*x^4 + x^5 + 6*x^7)/((1 - 2*x + x^2 - x^3)*(1 + x - x^3)*(1 - x^2 - x^3)) + O(x^40))) \\ Andrew Howroyd, Apr 20 2018

Formula

From Andrew Howroyd, Apr 20 2018: (Start)
a(n) = a(n-1) + 2*a(n-2) + a(n-3) - 3*a(n-4) - a(n-5) - a(n-6) + a(n-9) for n > 9.
G.f.: 2*x^2*(3 + 3*x - 9*x^2 - 3*x^3 - 3*x^4 + x^5 + 6*x^7)/((1 - 2*x + x^2 - x^3)*(1 + x - x^3)*(1 - x^2 - x^3)).
(End)

Extensions

a(1)-a(2) and terms a(11) and beyond from Andrew Howroyd, Apr 20 2018