A303226 Number of minimal total dominating sets in the n-gear graph.
0, 6, 12, 6, 30, 30, 56, 110, 156, 306, 506, 870, 1560, 2652, 4692, 8190, 14280, 25122, 43890, 77006, 135056, 236682, 415380, 728462, 1278030, 2242506, 3934272, 6903756, 12113880, 21256710, 37301556, 65456190, 114864806, 201569006, 353722056, 620732310
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Eric Weisstein's World of Mathematics, Gear Graph.
- Eric Weisstein's World of Mathematics, Minimal Total Dominating Set.
- Index entries for linear recurrences with constant coefficients, signature (1,2,1,-3,-1,-1,0,0,1).
Programs
-
Mathematica
Table[RootSum[-1 - # + #^3 &, #^n &] + RootSum[-1 + # - 2 #^2 + #^3 &, #^n &] + 2 RootSum[-1 + #^2 + #^3 &, #^(n + 2) (1 + #) &], {n, 20}] LinearRecurrence[{1, 2, 1, -3, -1, -1, 0, 0, 1}, {0, 6, 12, 6, 30, 30, 56, 110, 156}, 20] CoefficientList[Series[-2 x (3 + 3 x - 9 x^2 - 3 x^3 - 3 x^4 + x^5 + 6 x^7)/(-1 + x + 2 x^2 + x^3 - 3 x^4 - x^5 - x^6 + x^9), {x, 0, 20}], x]
-
PARI
concat([0], Vec(2*(3 + 3*x - 9*x^2 - 3*x^3 - 3*x^4 + x^5 + 6*x^7)/((1 - 2*x + x^2 - x^3)*(1 + x - x^3)*(1 - x^2 - x^3)) + O(x^40))) \\ Andrew Howroyd, Apr 20 2018
Formula
From Andrew Howroyd, Apr 20 2018: (Start)
a(n) = a(n-1) + 2*a(n-2) + a(n-3) - 3*a(n-4) - a(n-5) - a(n-6) + a(n-9) for n > 9.
G.f.: 2*x^2*(3 + 3*x - 9*x^2 - 3*x^3 - 3*x^4 + x^5 + 6*x^7)/((1 - 2*x + x^2 - x^3)*(1 + x - x^3)*(1 - x^2 - x^3)).
(End)
Extensions
a(1)-a(2) and terms a(11) and beyond from Andrew Howroyd, Apr 20 2018
Comments