A303278 If n = Product_j p_j^k_j where the p_j are distinct primes then a(n) = (Product_j k_j)^(Product_j p_j).
1, 1, 1, 4, 1, 1, 1, 9, 8, 1, 1, 64, 1, 1, 1, 16, 1, 64, 1, 1024, 1, 1, 1, 729, 32, 1, 27, 16384, 1, 1, 1, 25, 1, 1, 1, 4096, 1, 1, 1, 59049, 1, 1, 1, 4194304, 32768, 1, 1, 4096, 128, 1024, 1, 67108864, 1, 729, 1, 4782969, 1, 1, 1, 1073741824, 1, 1, 2097152, 36, 1, 1, 1, 17179869184, 1, 1, 1, 46656, 1, 1, 32768
Offset: 1
Keywords
Examples
a(36) = a(2^2 * 3^2) = (2*2)^(2*3) = 4^6 = 4096.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..4096
Crossrefs
Programs
-
Mathematica
Table[Times@@Transpose[FactorInteger[n]][[2]]^Last[Select[Divisors[n], SquareFreeQ]], {n, 75}]
-
PARI
a(n) = my(f=factor(n)); factorback(f[, 2])^factorback(f[, 1]); \\ Michel Marcus, Apr 21 2018
Formula
Extensions
Definition clarified by N. J. A. Sloane, May 01 2021
Comments