cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303279 Expansion of (1/(1 - x)^2) * Sum_{p prime, k>=1} x^(p^k)/(1 - x^(p^k)).

Original entry on oeis.org

0, 1, 3, 7, 12, 19, 27, 38, 51, 66, 82, 101, 121, 143, 167, 195, 224, 256, 289, 325, 363, 403, 444, 489, 536, 585, 637, 692, 748, 807, 867, 932, 999, 1068, 1139, 1214, 1290, 1368, 1448, 1532, 1617, 1705, 1794, 1886, 1981, 2078, 2176, 2279, 2384, 2492, 2602, 2715, 2829, 2947, 3067
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 20 2018

Keywords

Comments

Sum of exponents in prime-power factorization of product of first n factorials (A000178).
Partial sums of A022559.

Examples

			a(5) = 12 because 2!*3!*4!*5! = 2^8*3^3*5 and 8 + 3 + 1 = 12.
		

Crossrefs

Half of row sums of triangle A356718.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<1, [0$2],
          (p-> p+[numtheory[bigomega](n), p[1]])(b(n-1)))
        end:
    a:= n-> b(n+1)[2]:
    seq(a(n), n=1..55);  # Alois P. Heinz, Oct 07 2021
  • Mathematica
    nmax = 55; Rest[CoefficientList[Series[1/(1 - x)^2 Sum[Boole[PrimePowerQ[k]] x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[PrimeOmega[BarnesG[n + 2]], {n, 55}]
    Table[ Sum[ PrimeOmega@ j, {k, n}, {j, k}], {n, 55}]
  • PARI
    a(n) = my(t=0); sum(k=1, n, t+=bigomega(k)); \\ Daniel Suteu, Jan 17 2019

Formula

a(n) = (n^2/2) * (log(log(n)) + c + O(1/log(n))), where c = A083342 (De Koninck and Verreault, 2024, p. 49, eq. (3.1)). - Amiram Eldar, Dec 10 2024
a(n) = (1/2) * Sum_{k=0..n} A356718(n,k). - Dario T. de Castro, Feb 19 2025