A303280 Number of strict integer partitions of n whose parts have a common divisor other than 1.
0, 1, 1, 1, 1, 2, 1, 2, 2, 3, 1, 5, 1, 5, 4, 6, 1, 10, 1, 11, 6, 12, 1, 19, 3, 18, 8, 23, 1, 36, 1, 32, 13, 38, 7, 57, 1, 54, 19, 68, 1, 95, 1, 90, 33, 104, 1, 148, 5, 149, 39, 166, 1, 230, 14, 226, 55, 256, 1, 360, 1, 340, 82, 390, 20, 527, 1, 513, 105, 609, 1
Offset: 1
Keywords
Examples
The a(18) = 10 strict partitions are (18), (10,8), (12,6), (14,4), (15,3), (16,2), (8,6,4), (9,6,3), (10,6,2), (12,4,2).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; `if`(n=0, 1, add(add( `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n) end: a:= n-> -add(mobius(d)*b(n/d), d=divisors(n) minus {1}): seq(a(n), n=1..100); # Alois P. Heinz, Apr 23 2018
-
Mathematica
Table[-Sum[MoebiusMu[d]*PartitionsQ[n/d],{d,Rest[Divisors[n]]}],{n,100}]
Formula
a(n) = -Sum_{d|n, d > 1} mu(d) * A000009(n/d).