cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303281 Expansion of (x/(1 - x)) * (d/dx) Sum_{p prime, k>=1} x^(p^k)/(1 - x^(p^k)).

Original entry on oeis.org

0, 2, 5, 13, 18, 30, 37, 61, 79, 99, 110, 146, 159, 187, 217, 281, 298, 352, 371, 431, 473, 517, 540, 636, 686, 738, 819, 903, 932, 1022, 1053, 1213, 1279, 1347, 1417, 1561, 1598, 1674, 1752, 1912, 1953, 2079, 2122, 2254, 2389, 2481, 2528, 2768, 2866, 3016, 3118, 3274, 3327, 3543, 3653
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 20 2018

Keywords

Comments

Sum of exponents in prime-power factorization of hyperfactorial: Product_{k=1..n} k^k (A002109).
Partial sums of A066959.

Examples

			a(4) = 13 because 2^2*3^3*4^4 = 2^10*3^3 and 10 + 3 = 13.
		

Crossrefs

Programs

  • Mathematica
    nmax = 55; Rest[CoefficientList[Series[x/(1 - x) D[Sum[Boole[PrimePowerQ[k]] x^k/(1 - x^k), {k, 1, nmax}], x], {x, 0, nmax}], x]]
    Table[PrimeOmega[Hyperfactorial[n]], {n, 55}]
    Table[Sum[k PrimeOmega[k], {k, n}], {n, 55}]
    Accumulate[Table[k * PrimeOmega[k], {k, 1, 55}]] (* Amiram Eldar, Jun 13 2025 *)
  • PARI
    a(n) = sum(k=1, n, k*bigomega(k)); \\ Altug Alkan, Apr 20 2018