cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A002064 Cullen numbers: a(n) = n*2^n + 1.

Original entry on oeis.org

1, 3, 9, 25, 65, 161, 385, 897, 2049, 4609, 10241, 22529, 49153, 106497, 229377, 491521, 1048577, 2228225, 4718593, 9961473, 20971521, 44040193, 92274689, 192937985, 402653185, 838860801, 1744830465, 3623878657, 7516192769, 15569256449, 32212254721, 66571993089
Offset: 0

Views

Author

Keywords

Comments

Binomial transform is A084859. Inverse binomial transform is A004277. - Paul Barry, Jun 12 2003
Let A be the Hessenberg matrix of order n defined by: A[1,j]=1, A[i,i]:=2,(i>1), A[i,i-1] =-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= (-1)^(n-1)*coeff(charpoly(A,x),x). - Milan Janjic, Jan 26 2010
Indices of primes are listed in A005849. - M. F. Hasler, Jan 18 2015
Add the list of fractions beginning with 1/2 + 3/4 + 7/8 + ... + (2^n - 1)/2^n and take the sums pairwise from left to right. For 1/2 + 3/4 = 5/4, 5 + 4 = 9 = a(2); for 5/4 + 7/8 = 17/8, 17 + 8 = 25 = a(3); for 17/8 + 15/16 = 49/16, 49 + 16 = 65 = a(4); for 49/16 + 31/32 = 129/32, 129 + 32 = 161 = a(5). For each pairwise sum a/b, a + b = n*2^(n+1). - J. M. Bergot, May 06 2015
Number of divisors of (2^n)^(2^n). - Gus Wiseman, May 03 2021
Named after the Irish Jesuit priest James Cullen (1867-1933), who checked the primality of the terms up to n=100. - Amiram Eldar, Jun 05 2021

Examples

			G.f. = 1 + 3*x + 9*x^2 + 25*x^3 + 65*x^4 + 161*x^5 + 385*x^6 + 897*x^7 + ... - _Michael Somos_, Jul 18 2018
		

References

  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • R. K. Guy, Unsolved Problems in Number Theory, B20.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 240-242.
  • W. Sierpiński, Elementary Theory of Numbers. Państ. Wydaw. Nauk., Warsaw, 1964, p. 346.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Diagonal k = n + 1 of A046688.
A000005 counts divisors of n.
A000312 = n^n.
A002109 gives hyperfactorials (sigma: A260146, omega: A303281).
A057156 = (2^n)^(2^n).
A062319 counts divisors of n^n.
A173339 lists positions of squares in A062319.
A188385 gives the highest prime exponent in n^n.
A249784 counts divisors of n^n^n.

Programs

Formula

a(n) = 4a(n-1) - 4a(n-2) + 1. - Paul Barry, Jun 12 2003
a(n) = sum of row (n+1) of triangle A130197. Example: a(3) = 25 = (12 + 8 + 4 + 1), row 4 of A130197. - Gary W. Adamson, May 16 2007
Row sums of triangle A134081. - Gary W. Adamson, Oct 07 2007
Equals row sums of triangle A143038. - Gary W. Adamson, Jul 18 2008
Equals row sums of triangle A156708. - Gary W. Adamson, Feb 13 2009
G.f.: -(1-2*x+2*x^2)/((-1+x)*(2*x-1)^2). a(n) = A001787(n+1)+1-A000079(n). - R. J. Mathar, Nov 16 2007
a(n) = 1 + 2^(n + log_2(n)) ~ 1 + A000079(n+A004257(n)). a(n) ~ A000051(n+A004257(n)). - Jonathan Vos Post, Jul 20 2008
a(0)=1, a(1)=3, a(2)=9, a(n) = 5*a(n-1)-8*a(n-2)+4*a(n-3). - Harvey P. Dale, Oct 13 2011
a(n) = A036289(n) + 1 = A003261(n) + 2. - Reinhard Zumkeller, Mar 16 2013
E.g.f.: 2*x*exp(2*x) + exp(x). - Robert Israel, Dec 12 2014
a(n) = 2^n * A000325(n) = 4^n * A186947(-n) for all n in Z. - Michael Somos, Jul 18 2018
a(n) = Sum_{i=0..n-1} a(i) + A000325(n+1). - Ivan N. Ianakiev, Aug 07 2019
a(n) = sigma((2^n)^(2^n)) = A000005(A057156(n)) = A062319(2^n). - Gus Wiseman, May 03 2021
Sum_{n>=0} 1/a(n) = A340841. - Amiram Eldar, Jun 05 2021

Extensions

Edited by M. F. Hasler, Oct 31 2012

A303279 Expansion of (1/(1 - x)^2) * Sum_{p prime, k>=1} x^(p^k)/(1 - x^(p^k)).

Original entry on oeis.org

0, 1, 3, 7, 12, 19, 27, 38, 51, 66, 82, 101, 121, 143, 167, 195, 224, 256, 289, 325, 363, 403, 444, 489, 536, 585, 637, 692, 748, 807, 867, 932, 999, 1068, 1139, 1214, 1290, 1368, 1448, 1532, 1617, 1705, 1794, 1886, 1981, 2078, 2176, 2279, 2384, 2492, 2602, 2715, 2829, 2947, 3067
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 20 2018

Keywords

Comments

Sum of exponents in prime-power factorization of product of first n factorials (A000178).
Partial sums of A022559.

Examples

			a(5) = 12 because 2!*3!*4!*5! = 2^8*3^3*5 and 8 + 3 + 1 = 12.
		

Crossrefs

Half of row sums of triangle A356718.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<1, [0$2],
          (p-> p+[numtheory[bigomega](n), p[1]])(b(n-1)))
        end:
    a:= n-> b(n+1)[2]:
    seq(a(n), n=1..55);  # Alois P. Heinz, Oct 07 2021
  • Mathematica
    nmax = 55; Rest[CoefficientList[Series[1/(1 - x)^2 Sum[Boole[PrimePowerQ[k]] x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[PrimeOmega[BarnesG[n + 2]], {n, 55}]
    Table[ Sum[ PrimeOmega@ j, {k, n}, {j, k}], {n, 55}]
  • PARI
    a(n) = my(t=0); sum(k=1, n, t+=bigomega(k)); \\ Daniel Suteu, Jan 17 2019

Formula

a(n) = (n^2/2) * (log(log(n)) + c + O(1/log(n))), where c = A083342 (De Koninck and Verreault, 2024, p. 49, eq. (3.1)). - Amiram Eldar, Dec 10 2024
a(n) = (1/2) * Sum_{k=0..n} A356718(n,k). - Dario T. de Castro, Feb 19 2025

A046688 Antidiagonals of square array in which k-th row (k>0) is an arithmetic progression of difference 2^(k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 5, 1, 1, 5, 7, 9, 9, 1, 1, 6, 9, 13, 17, 17, 1, 1, 7, 11, 17, 25, 33, 33, 1, 1, 8, 13, 21, 33, 49, 65, 65, 1, 1, 9, 15, 25, 41, 65, 97, 129, 129, 1, 1, 10, 17, 29, 49, 81, 129, 193, 257, 257, 1, 1, 11, 19, 33, 57, 97, 161, 257, 385, 513, 513, 1
Offset: 0

Views

Author

Keywords

Examples

			From _Gus Wiseman_, May 08 2021: (Start):
Array A(m,n) = 1 + n*2^(m-1) begins:
       n=0: n=1: n=2: n=3: n=4: n=5: n=6: n=7: n=8: n=9:
  m=0:   1    1    1    1    1    1    1    1    1    1
  m=1:   1    2    3    5    9   17   33   65  129  257
  m=2:   1    3    5    9   17   33   65  129  257  513
  m=3:   1    4    7   13   25   49   97  193  385  769
  m=4:   1    5    9   17   33   65  129  257  513 1025
  m=5:   1    6   11   21   41   81  161  321  641 1281
  m=6:   1    7   13   25   49   97  193  385  769 1537
  m=7:   1    8   15   29   57  113  225  449  897 1793
  m=8:   1    9   17   33   65  129  257  513 1025 2049
  m=9:   1   10   19   37   73  145  289  577 1153 2305
Triangle T(n,k) = 1 + (n-k)*2^(k-1) begins:
   1
   1   1
   1   2   1
   1   3   3   1
   1   4   5   5   1
   1   5   7   9   9   1
   1   6   9  13  17  17   1
   1   7  11  17  25  33  33   1
   1   8  13  21  33  49  65  65   1
   1   9  15  25  41  65  97 129 129   1
   1  10  17  29  49  81 129 193 257 257   1
   1  11  19  33  57  97 161 257 385 513 513   1
(End)
		

References

  • G. H. Hardy, A Theorem Concerning the Infinite Cardinal Numbers, Quart. J. Math., 35 (1904), p. 90 = Collected Papers, Vol. VII, p. 430.

Crossrefs

Row sums are A000079.
Diagonal n = m + 1 of the array is A002064.
Diagonal n = m of the array is A005183.
Column m = 1 of the array is A094373.
Diagonal n = m - 1 of the array is A131056.
A002109 gives hyperfactorials (sigma: A260146, omega: A303281).
A009998(k,n) = n^k.
A009999(n,k) = n^k.
A057156 = (2^n)^(2^n).
A062319 counts divisors of n^n.

Programs

  • Mathematica
    Table[If[k==0,1,n*2^(k-1)+1],{n,0,9},{k,0,9}] (* ARRAY, Gus Wiseman, May 08 2021 *)
    Table[If[k==0,1,1+(n-k)*2^(k-1)],{n,0,10},{k,0,n}] (* TRIANGLE, Gus Wiseman, May 08 2021 *)
  • PARI
    A(m,n)={if(m>0, 1+n*2^(m-1), 1)}
    { for(m=0, 10, for(n=0, 10, print1(A(m,n), ", ")); print) } \\ Andrew Howroyd, Mar 07 2020

Formula

A(m,n) = 1 + n*2^(m-1) for m > 1. - Andrew Howroyd, Mar 07 2020
As a triangle, T(n,k) = A(k,n-k) = 1 + (n-k)*2^(k-1). - Gus Wiseman, May 08 2021

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 06 2000

A323444 Sum of exponents in prime-power factorization of Product_{k=0..n} binomial(n,k) (A001142).

Original entry on oeis.org

0, 0, 1, 2, 6, 6, 11, 10, 23, 28, 33, 28, 45, 38, 44, 50, 86, 74, 96, 82, 106, 110, 114, 96, 147, 150, 153, 182, 211, 184, 215, 186, 281, 280, 279, 278, 347, 308, 306, 304, 380, 336, 374, 328, 368, 408, 403, 352, 489, 482, 524, 516, 559, 498, 596, 586, 686, 674
Offset: 0

Views

Author

Daniel Suteu, Jan 15 2019

Keywords

Comments

Also sum of exponents in prime-power factorization of hyperfactorial(n) / superfactorial(n).

Examples

			a(4) = 6 because C(4,0)*C(4,1)*C(4,2)*C(4,3)*C(4,4) = 2^5 * 3^1 and 5 + 1 = 6, where C(n,k) is the binomial coefficient.
		

Crossrefs

Programs

  • Mathematica
    Array[Sum[PrimeOmega@ Binomial[#, k], {k, 0, #}] &, 57] (* Michael De Vlieger, Jan 19 2019 *)
  • PARI
    a(n) = sum(k=0, n, bigomega(binomial(n, k)));
    
  • PARI
    a(n) = my(t=0); sum(k=1, n, my(b=bigomega(k)); t+=b; k*b-t);
    
  • PARI
    first(n) = my(res = List([0]), r=0, t=0, b=0); for(k=1, n, b=bigomega(k); t += b; r += k*b-t; listput(res, r)); res \\ adapted from Daniel Suteu \\ David A. Corneth, Jan 16 2019

Formula

a(n) = A303281(n) - A303279(n), for n > 0.
a(n) = A001222(A001142(n)).
Showing 1-4 of 4 results.