cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303304 Generalized 25-gonal (or icosipentagonal) numbers: m*(23*m - 21)/2 with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 22, 25, 67, 72, 135, 142, 226, 235, 340, 351, 477, 490, 637, 652, 820, 837, 1026, 1045, 1255, 1276, 1507, 1530, 1782, 1807, 2080, 2107, 2401, 2430, 2745, 2776, 3112, 3145, 3502, 3537, 3915, 3952, 4351, 4390, 4810, 4851, 5292, 5335, 5797, 5842, 6325, 6372, 6876, 6925
Offset: 0

Views

Author

Omar E. Pol, Jul 10 2018

Keywords

Comments

Numbers k for which 184*k + 441 is a square. - Bruno Berselli, Jul 10 2018
Partial sums of A317321. - Omar E. Pol, Jul 28 2018

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), this sequence (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • GAP
    a:=[0,1,22,25,67];;  for n in [6..50] do a[n]:=a[n-1]+2*a[n-2]-2*a[n-3]-a[n-4]+a[n-5]; od; a; # Muniru A Asiru, Jul 10 2018
  • Maple
    seq(coeff(series(x*(x^2+21*x+1)/((1-x)^3*(1+x)^2), x,n+1),x,n),n=0..50); # Muniru A Asiru, Jul 10 2018
  • Mathematica
    CoefficientList[Series[x (1 + 21 x + x^2)/((1 - x)^3*(1 + x)^2), {x, 0, 49}], x] (* or *)
    Array[PolygonalNumber[25, (1 - 2 Boole[EvenQ@ #]) Ceiling[#/2]] &, 50, 0] (* Michael De Vlieger, Jul 10 2018 *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 22, 25, 67}, 50] (* Robert G. Wilson v, Jul 15 2018 *)
  • PARI
    concat(0, Vec(x*(1 + 21*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^40))) \\ Colin Barker, Jul 10 2018
    

Formula

From Colin Barker, Jul 10 2018: (Start)
G.f.: x*(1 + 21*x + x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = n*(23*n + 42)/8 for n even.
a(n) = (23*n - 19)*(n + 1)/8 for n odd.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
(End)
Sum_{n>=1} 1/a(n) = 46/441 + 2*Pi*cot(2*Pi/23)/21. - Amiram Eldar, Mar 01 2022