A303348 Expansion of Product_{n>=1} (1 - 9*x^n)^(1/3).
1, -3, -12, -39, -246, -1578, -11487, -84054, -635781, -4893357, -38292969, -303553209, -2432865630, -19678331838, -160427322399, -1316796234933, -10872602692581, -90242886252945, -752488383572787, -6300541703215803, -52949782408528290
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
seq(coeff(series(mul((1-9*x^k)^(1/3), k=1..n), x, n+1), x, n), n=0..25); # Muniru A Asiru, Apr 22 2018
-
PARI
N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-9*x^k)^(1/3)))
Formula
a(n) ~ -c * 3^(2*n-1) / (Gamma(2/3) * n^(4/3)), where c = QPochhammer[1/9]^(1/3) = 0.95703379660353017269195329... - Vaclav Kotesovec, Apr 25 2018
Comments