A303351 Expansion of Product_{n>=1} (1 + 9*x^n)^(1/3).
1, 3, -6, 57, -294, 1884, -13011, 95178, -712293, 5448495, -42444375, 335392941, -2681006280, 21639853488, -176113016241, 1443450932445, -11903668996713, 98695838478585, -822212761531101, 6878755556938029, -57767592614370576, 486792969548157129
Offset: 0
Keywords
Crossrefs
Programs
-
Maple
seq(coeff(series(mul((1+9*x^k)^(1/3), k = 1..n), x, n+1), x, n), n = 0..25); # Muniru A Asiru, Apr 22 2018
-
Mathematica
nmax = 30; CoefficientList[Series[Product[(1 + 9*x^k)^(1/3), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 22 2018 *)
-
PARI
N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+9*x^k)^(1/3)))
Formula
a(n) ~ -(-1)^n * c^(1/3) * 3^(2*n-1) / (Gamma(2/3) * n^(4/3)), where c = Product_{k>=2} (1 + 9*(-1/9)^k) = 1.09874828793226302381837574278380702... - Vaclav Kotesovec, Apr 22 2018
Comments