A303364 Number of strict integer partitions of n with pairwise indivisible and squarefree parts.
1, 1, 1, 0, 2, 1, 2, 1, 1, 3, 2, 2, 4, 3, 3, 4, 6, 5, 5, 6, 7, 8, 9, 10, 10, 11, 11, 14, 14, 17, 16, 18, 19, 23, 24, 27, 29, 30, 33, 36, 41, 41, 42, 46, 51, 56, 60, 66, 67, 71, 81, 86, 93, 96, 101, 110, 121, 129, 135, 144, 153, 159, 173, 192, 204, 207, 224
Offset: 1
Keywords
Examples
The a(23) = 9 strict integer partitions are (23), (13,10), (17,6), (21,2), (10,7,6), (11,7,5), (13,7,3), (11,7,3,2), (13,5,3,2).
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 1..700 (terms 0..400 from Andrew Howroyd)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@SquareFreeQ/@#&&Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]==={}&]],{n,60}]
-
PARI
lista(nn)={local(Cache=Map()); my(excl=vector(nn, n, sumdiv(n, d, 2^(n-d)))); my(c(n, m, b)= if(n==0, 1, while(m>n || bittest(b,0), m--; b>>=1); my(hk=[n, m, b], z); if(!mapisdefined(Cache, hk, &z), z = if(m, self()(n, m-1, b>>1) + self()(n-m, m, bitor(b, excl[m])), 0); mapput(Cache, hk, z)); z)); my(a(n)=c(n, n, sum(i=1, n, if(!issquarefree(i), 2^(n-i))))); for(n=1, nn, print1(a(n), ", ")) } \\ Andrew Howroyd, Nov 02 2019