A303403 Even numbers that are not the sum of two prime-indexed primes.
2, 4, 12, 18, 24, 26, 30, 32, 38, 40, 50, 54, 56, 60, 66, 68, 74, 80, 92, 96, 102, 104, 106, 110, 116, 122, 128, 136, 146, 148, 152, 154, 156, 164, 170, 172, 178, 180, 200, 204, 206, 212, 226, 230, 234, 248, 256, 260, 264, 268, 276, 290, 292, 296, 298, 302
Offset: 1
Keywords
Examples
20 is not in the sequence since 20 = 17 + 3 = prime(7) + prime(2). 2 and 7 are primes, so 3 and 17 are prime-indexed primes. - _Michael B. Porter_, May 21 2018
Links
- Jonathan Bayless, Dominic Klyve, and Tomás Oliveira e Silva, New Bounds and Computations on Prime-Indexed Primes, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 13, Paper A43, 2013.
Crossrefs
Equals 2*A174682. - Michel Marcus, May 18 2018
Programs
-
Mathematica
pipQ[n_]:=PrimeQ[n]&&PrimeQ[PrimePi[n]]; s1falsifiziertQ[s_]:= Module[{ip=IntegerPartitions[s, {2}], widerlegt=False}, Do[If[pipQ[ip[[i, 1]] ] ~And~ pipQ [ip[[i, 2]] ], widerlegt = True; Break[]], {i, 1, Length[ip]}]; widerlegt]; Select[Range[2500],EvenQ[#]&& s1falsifiziertQ[ # ]==False&] (* after Michael Taktikos at A014092 *) (* or *) p = Prime@ Prime@ Range@ PrimePi@ PrimePi@ 302; Select[Range[2, 302, 2], IntegerPartitions[#, {2}, p] == {} &] (* Giovanni Resta, May 31 2018 *)
-
PARI
isok(n) = {if (n % 2, return (0)); forprime(p=2, n/2, if (isprime(primepi(p)) && isprime(n-p) && isprime(primepi(n-p)), return (0));); return (1);} \\ Michel Marcus, May 18 2018
Comments