A303487 a(n) = n! * [x^n] 1/(1 - 4*x)^(n/4).
1, 1, 12, 231, 6144, 208845, 8648640, 422463195, 23781703680, 1515973484025, 107941254220800, 8491022274509775, 731304510986649600, 68444451854354701125, 6916953288171902976000, 750681472158682148959875, 87076954662428278259712000, 10751175443940144673035200625
Offset: 0
Keywords
Examples
a(1) = 1; a(2) = 2*6 = 12; a(3) = 3*7*11 = 231; a(4) = 4*8*12*16 = 6144; a(5) = 5*9*13*17*21 = 208845, etc.
Crossrefs
Programs
-
Mathematica
Table[n! SeriesCoefficient[1/(1 - 4 x)^(n/4), {x, 0, n}], {n, 0, 17}] Table[Product[4 k + n, {k, 0, n - 1}], {n, 0, 17}] Table[4^n Pochhammer[n/4, n], {n, 0, 17}]
Formula
a(n) = Product_{k=0..n-1} (4*k + n).
a(n) = 4^n*Gamma(5*n/4)/Gamma(n/4).
a(n) ~ 5^(5*n/4-1/2)*n^n/exp(n).