A303556 Numbers equal to the sum of the numbers between two of their consecutive divisors.
490, 55930, 98648, 222560, 396550, 584988, 838448, 1173102, 2345720, 2855660, 4150120, 4781502, 5557300, 6072460, 6115122, 6688416, 6715280, 9390290, 9486950, 11691498, 12704510, 13331240, 16035760, 17325700, 19377050, 20055070, 20859410, 29651748, 34516160, 35040352
Offset: 1
Keywords
Examples
a(1) = 490 because 14 and 35 are two consecutive divisors of 490 and the sum of the numbers from 15 to 34 is equal to 490 itself. a(7) = 838448 because 1807 and 2224 are two consecutive divisors of 838448 and the sum of the numbers from 1808 to 2223 is equal to 838448 itself.
Crossrefs
Cf. A055233.
Programs
-
Maple
with(numtheory): P:=proc(q) local a,k,n; for n from 1 to q do if not isprime(n) then a:=sort([op(divisors(n))]); for k from 1 to tau(n)-1 do if n=((a[k+1]-1)*a[k+1]-a[k]*(a[k]+1))/2 then print(n); break; fi; od; fi; od; end: P(10^9);
-
Mathematica
Select[Range[351*10^5],MemberQ[Total[Range[#[[1]]+1,#[[2]]-1]]&/@Partition[ Divisors[ #],2,1],#]&] (* Harvey P. Dale, Feb 14 2023 *)
-
PARI
isok(n) = my(d=divisors(n)); vecsearch(vecsort(vector(#d-1, k, ((d[k+1]-1)*d[k+1]-d[k]*(d[k]+1))/2),,8), n); \\ Michel Marcus, Apr 27 2018
Extensions
a(10)-a(30) from Giovanni Resta, Apr 27 2018
Comments