A303606 Powers of composite squarefree numbers that are not squarefree.
36, 100, 196, 216, 225, 441, 484, 676, 900, 1000, 1089, 1156, 1225, 1296, 1444, 1521, 1764, 2116, 2601, 2744, 3025, 3249, 3364, 3375, 3844, 4225, 4356, 4761, 4900, 5476, 5929, 6084, 6724, 7225, 7396, 7569, 7776, 8281, 8649, 8836, 9025, 9261, 10000, 10404, 10648, 11025, 11236
Offset: 1
Keywords
Examples
196 is in the sequence because 196 = 2^2*7^2. 4900 is in the sequence because 4900 = 2^2*5^2*7^2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Prime Power.
- Eric Weisstein's World of Mathematics, Squarefree.
Crossrefs
Programs
-
Mathematica
Select[Range[12000], Length[Union[FactorInteger[#][[All, 2]]]] == 1 && ! SquareFreeQ[#] && ! PrimePowerQ[#] &] seq[max_] := Module[{sp = Select[Range[Floor@Sqrt[max]], SquareFreeQ[#] && PrimeNu[#] > 1 &], s = {}}, Do[s = Join[s, sp[[k]]^Range[2, Floor@Log[sp[[k]], max]]], {k, 1, Length[sp]}]; Union@s]; seq[10^4] (* Amiram Eldar, Feb 12 2021 *)
-
Python
from math import isqrt from sympy import mobius, primepi, integer_nthroot def A303606(n): def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))-primepi(x)) def f(x): return n-3+x+(y:=x.bit_length())-sum(g(integer_nthroot(x,k)[0]) for k in range(2,y)) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 19 2024
Formula
Sum_{n>=1} 1/a(n) = Sum_{n>=1} 1/((A120944(n)-1)*A120944(n)) = Sum_{k>=2} (zeta(k)/zeta(2*k) - P(k) - 1) = 0.07547719891508850482..., where P(k) is the prime zeta function. - Amiram Eldar, Feb 12 2021