A303624 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2, 3, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
1, 1, 2, 1, 2, 4, 1, 12, 2, 8, 1, 20, 38, 3, 16, 1, 72, 68, 148, 6, 32, 1, 168, 362, 325, 616, 10, 64, 1, 496, 1283, 3591, 1870, 2520, 21, 128, 1, 1296, 5411, 19467, 37910, 10741, 10288, 42, 256, 1, 3616, 22516, 160807, 350410, 398859, 62207, 42100, 86, 512, 1, 9760
Offset: 1
Examples
Some solutions for n=5 k=4 ..0..0..1..1. .0..0..0..0. .0..0..1..1. .0..0..0..1. .0..0..0..1 ..0..0..1..1. .0..0..0..0. .0..0..1..1. .1..0..0..0. .0..0..0..1 ..0..0..1..1. .1..1..0..0. .1..1..1..1. .0..0..0..1. .1..0..0..0 ..1..1..1..1. .0..1..1..1. .1..1..1..1. .0..0..0..1. .0..0..0..1 ..0..1..1..1. .0..1..1..1. .0..1..1..0. .1..0..0..0. .0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..180
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: a(n) = 5*a(n-1) -5*a(n-2) +8*a(n-3) -12*a(n-4) +4*a(n-5) -4*a(n-6) for n>8
k=4: [order 22] for n>24
k=5: [order 62] for n>65
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = 2*a(n-1) +4*a(n-2) -4*a(n-3) -4*a(n-4)
n=3: [order 16] for n>17
n=4: [order 43] for n>44
Comments