cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303647 a(n) = ceiling(a(n-1)/(2^(1/3)-1)+1), a(1)=1.

Original entry on oeis.org

1, 5, 21, 82, 317, 1221, 4699, 18080, 69561, 267625, 1029641, 3961362, 15240637, 58635641, 225590199, 867918160, 3339160721, 12846826845, 49425880861, 190157283842, 731596320957, 2814686695261, 10829006332499, 41662675404240, 160289731905481, 616686228261665
Offset: 1

Views

Author

Gregory Gerard Wojnar, Apr 27 2018

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember;
           if n<1 then 0 else
           if n=1 then 1 else ceil(a(n-1)/(2^(1/3)-1)+1)
         end if end if end proc;
    seq(a(n), n=0..10);
  • Mathematica
    Nest[Append[#, Ceiling[#[[-1]]/(2^(1/3) - 1) + 1]] &, {1}, 25] (* or *)
    Rest@ CoefficientList[Series[x (1 + x + x^2)/((1 - x) (1 - 3 x - 3 x^2 - x^3)), {x, 0, 25}], x] (* Michael De Vlieger, Apr 28 2018 *)
  • PARI
    a(n) = if (n==1, 1, ceil(a(n-1)/(2^(1/3)-1)+1)); \\ Michel Marcus, Apr 28 2018

Formula

a(n) = A301483(n+2) - A195350(n+2) + A195339(n-2) (conjectured).
Conjectures from Colin Barker, Apr 28 2018: (Start)
G.f.: x*(1 + x + x^2) / ((1 - x)*(1 - 3*x - 3*x^2 - x^3)).
a(n) = 4*a(n-1) - 2*a(n-3) - a(n-4) for n>4.
(End)