cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303692 a(n) = n^2*(2*n - 3 - (-1)^n)/4.

Original entry on oeis.org

0, 0, 9, 16, 50, 72, 147, 192, 324, 400, 605, 720, 1014, 1176, 1575, 1792, 2312, 2592, 3249, 3600, 4410, 4840, 5819, 6336, 7500, 8112, 9477, 10192, 11774, 12600, 14415, 15360, 17424, 18496, 20825, 22032, 24642, 25992, 28899, 30400, 33620, 35280, 38829, 40656
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 28 2018

Keywords

Comments

Total area of all squares with side length n such that n = s + t and s < t where s and t are positive integers.

Crossrefs

Cf. A265645.

Programs

  • Magma
    [n^2*(2*n-3-(-1)^n)/4: n in [1..50]]; // Vincenzo Librandi, Apr 30 2018
    
  • Mathematica
    Table[n^2 (2 n - 3 - (-1)^n)/4, {n, 40}]
    CoefficientList[ Series[(x^5 + 7x^4 + 7x^3 + 9x^2)/((x - 1)^4 (x + 1)^3), {x, 0, 43}], x] (* or *)
    LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {0, 0, 9, 16, 50, 72, 147}, 44] (* Robert G. Wilson v, Apr 28 2018 *)
  • PARI
    a(n) = (n-1)\2*n^2; \\ Altug Alkan, Apr 30 2018

Formula

a(n) = Sum_{i=1..floor((n-1)/2)} n^2.
a(n) = n^2 * floor((n-1)/2).
G.f.: x^2*(x^3 + 7*x^2 + 7*x + 9)/((x - 1)^4*(x + 1)^3).
Sum_{n>=3} 1/a(n) = 9/2 - 7*Pi^2/24 - 2*log(2). - Vaclav Kotesovec, May 02 2018