cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303709 Number of periodic factorizations of n using elements of A007916 (numbers that are not perfect powers).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Apr 29 2018

Keywords

Comments

A periodic factorization of n is a finite multiset of positive integers greater than 1 whose product is n and whose multiplicities have a common divisor greater than 1. Note that a factorization of a number that is not a perfect power (A007916) is always aperiodic (A303386), so the indices of nonzero entries of this sequence all lie at perfect powers (A001597).

Examples

			The a(900) = 5 periodic factorizations are (2*2*3*3*5*5), (2*2*15*15), (3*3*10*10), (5*5*6*6), (30*30).
		

Crossrefs

Programs

  • Mathematica
    radQ[n_]:=Or[n===1,GCD@@FactorInteger[n][[All,2]]===1];
    facsr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsr[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],radQ]}]];
    Table[Length[Select[facsr[n],GCD@@Length/@Split[#]!=1&]],{n,200}]
  • PARI
    gcd_of_multiplicities(lista) = { my(u=length(lista)); if(u<2, u, my(g=0, pe = lista[1], j=1); for(i=2,u,if(lista[i]==pe, j++, g = gcd(j,g); j=1; pe = lista[i])); gcd(g,j)); }; \\ the supplied lista (newfacs) should be monotonic
    A303709(n, m=n, facs=List([])) = if(1==n, (1!=gcd_of_multiplicities(facs)), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m)&&!ispower(d), newfacs = List(facs); listput(newfacs,d); s += A303709(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Dec 06 2018

Formula

a(n) <= A303553(n) <= A001055(n). - Antti Karttunen, Dec 06 2018

Extensions

Changed a(1) to 1 by Gus Wiseman, Dec 06 2018