cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A303707 Number of factorizations of n using elements of A007916 (numbers that are not perfect powers).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 5, 1, 1, 2, 2, 2, 5, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 9, 1, 2, 3, 1, 2, 5, 1, 3, 2, 5, 1, 8, 1, 2, 3, 3, 2, 5, 1, 5, 1, 2, 1, 9, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 29 2018

Keywords

Comments

First differs from A081707 at a(60) = 9, A081707(60) = 8.

Examples

			The a(60) = 9 factorizations are (2*2*3*5), (2*2*15), (2*3*10), (2*5*6), (2*30), (3*20), (5*12), (6*10), (60).
		

Crossrefs

Programs

  • Mathematica
    radQ[n_]:=Or[n===1,GCD@@FactorInteger[n][[All,2]]===1];
    facsr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsr[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],radQ]}]];
    Table[Length[facsr[n]],{n,100}]

Formula

Dirichlet g.f.: Product_{n in A007916} 1/(1 - n^s).

A303708 Number of aperiodic factorizations of n using elements of A007916 (numbers that are not perfect powers).

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 3, 1, 2, 2, 0, 1, 3, 1, 3, 2, 2, 1, 4, 0, 2, 0, 3, 1, 5, 1, 0, 2, 2, 2, 3, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 5, 0, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 9, 1, 2, 3, 0, 2, 5, 1, 3, 2, 5, 1, 8, 1, 2, 3, 3, 2, 5, 1, 5, 0, 2, 1, 9, 2, 2, 2, 4, 1, 9, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 29 2018

Keywords

Comments

An aperiodic factorization of n is a finite multiset of positive integers greater than 1 whose product is n and whose multiplicities are relatively prime.
The positions of zeros in this sequence are the prime powers A000961.

Examples

			The a(144) = 8 aperiodic factorizations are (2*2*2*3*6), (2*2*2*18), (2*2*3*12), (2*3*24), (2*6*12), (2*72), (3*48) and (6*24). Missing from this list are (12*12), (2*2*6*6) and (2*2*2*2*3*3).
		

Crossrefs

Programs

  • Mathematica
    radQ[n_]:=Or[n===1,GCD@@FactorInteger[n][[All,2]]===1];
    facsr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsr[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],radQ]}]];
    Table[Length[Select[facsr[n],GCD@@Length/@Split[#]===1&]],{n,100}]

Formula

a(n) = Sum_{d in A007916, d|A052409(n)} mu(d) * A303707(n^(1/d)).

A303710 Number of factorizations of numbers that are not perfect powers using only numbers that are not perfect powers.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 2, 3, 1, 5, 1, 2, 2, 2, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 5, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 9, 1, 2, 3, 2, 5, 1, 3, 2, 5, 1, 8, 1, 2, 3, 3, 2, 5, 1, 5, 2, 1, 9, 2, 2, 2, 4, 1, 9, 2, 3, 2, 2, 2, 6, 1, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 29 2018

Keywords

Comments

Note that a factorization of a number that is not a perfect power (A007916) is always itself aperiodic, meaning the multiplicities of its factors are relatively prime.

Examples

			The a(19) = 4 factorizations of 24 are (2*2*2*3), (2*2*6), (2*12), (24).
The a(23) = 5 factorizations of 30 are (2*3*5), (2*15), (3*10), (5*6), (30).
		

Crossrefs

Programs

  • Mathematica
    radQ[n_] := And[n > 1, GCD@@FactorInteger[n][[All, 2]] === 1]; facsr[n_] := If[n <= 1, {{}}, Join@@Table[Map[Prepend[#, d] &, Select[facsr[n/d], Min@@# >= d &]], {d, Select[Divisors[n], radQ]}]]; Table[Length[facsr[n]], {n, Select[Range[100], radQ]}]

A304250 Perfect powers whose prime factors span an initial interval of prime numbers.

Original entry on oeis.org

4, 8, 16, 32, 36, 64, 128, 144, 216, 256, 324, 512, 576, 900, 1024, 1296, 1728, 2048, 2304, 2916, 3600, 4096, 5184, 5832, 7776, 8100, 8192, 9216, 11664, 13824, 14400, 16384, 20736, 22500, 26244, 27000, 32400, 32768, 36864, 44100, 46656, 57600, 65536, 72900
Offset: 1

Views

Author

Gus Wiseman, May 13 2018

Keywords

Comments

The multiset of prime indices of a(n) is the a(n)-th row of A112798. This multiset is normal, meaning it spans an initial interval of positive integers, and periodic, meaning its multiplicities have a common divisor greater than 1.

Examples

			Sequence of all normal periodic multisets begins
4:    {1,1}
8:    {1,1,1}
16:   {1,1,1,1}
32:   {1,1,1,1,1}
36:   {1,1,2,2}
64:   {1,1,1,1,1,1}
128:  {1,1,1,1,1,1,1}
144:  {1,1,1,1,2,2}
216:  {1,1,1,2,2,2}
256:  {1,1,1,1,1,1,1,1}
324:  {1,1,2,2,2,2}
512:  {1,1,1,1,1,1,1,1,1}
576:  {1,1,1,1,1,1,2,2}
900:  {1,1,2,2,3,3}
1024: {1,1,1,1,1,1,1,1,1,1}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],FactorInteger[#][[-1,1]]==Prime[Length[FactorInteger[#]]]&&GCD@@FactorInteger[#][[All,2]]>1&]

Formula

Intersection of A001597 and A055932.

A320803 Number of non-isomorphic multiset partitions of weight n in which all parts are aperiodic multisets.

Original entry on oeis.org

1, 1, 3, 7, 21, 56, 174, 517, 1664, 5383, 18199, 62745, 223390, 813425, 3040181, 11620969, 45446484, 181537904, 740369798, 3079779662, 13059203150, 56406416004, 248027678362, 1109626606188, 5048119061134, 23342088591797, 109648937760252, 523036690273237
Offset: 0

Views

Author

Gus Wiseman, Nov 06 2018

Keywords

Comments

A multiset is aperiodic if its multiplicities are relatively prime.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 21 multiset partitions with aperiodic parts:
  {{1}}  {{1,2}}    {{1,2,2}}      {{1,2,2,2}}
         {{1},{1}}  {{1,2,3}}      {{1,2,3,3}}
         {{1},{2}}  {{1},{2,3}}    {{1,2,3,4}}
                    {{2},{1,2}}    {{1},{1,2,2}}
                    {{1},{1},{1}}  {{1,2},{1,2}}
                    {{1},{2},{2}}  {{1},{2,3,3}}
                    {{1},{2},{3}}  {{1},{2,3,4}}
                                   {{1,2},{3,4}}
                                   {{1,3},{2,3}}
                                   {{2},{1,2,2}}
                                   {{3},{1,2,3}}
                                   {{1},{1},{2,3}}
                                   {{1},{2},{1,2}}
                                   {{1},{2},{3,4}}
                                   {{1},{3},{2,3}}
                                   {{2},{2},{1,2}}
                                   {{1},{1},{1},{1}}
                                   {{1},{1},{2},{2}}
                                   {{1},{2},{2},{2}}
                                   {{1},{2},{3},{3}}
                                   {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))}
    a(n)={if(n==0, 1, my(mbt=vector(n, d, moebius(d)), s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(dirmul(mbt, sum(t=1, n, K(q, t, n)/t)))), n)); s/n!)} \\ Andrew Howroyd, Jan 16 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 16 2023

A303553 Number of periodic factorizations of n > 1 into positive factors greater than 1; a(1) = 1 by convention.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 26 2018

Keywords

Comments

A multiset is periodic if its multiplicities have a common divisor greater than 1.

Examples

			The a(64)  = 4 periodic factorizations are (2*2*2*2*2*2), (2*2*4*4), (4*4*4), (8*8).
The a(144) = 4 periodic factorizations are (2*2*2*2*3*3), (2*2*6*6), (3*3*4*4), (12*12).
The a(256) = 5 periodic factorizations are (2*2*2*2*2*2*2*2), (2*2*2*2*4*4), (2*2*8*8), (4*4*4*4), (16*16).
The a(576) = 7 periodic factorizations are (2*2*2*2*2*2*3*3), (2*2*2*2*6*6), (2*2*3*3*4*4), (2*2*12*12), (3*3*8*8), (4*4*6*6), (24*24).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],GCD@@Length/@Split[#]>1&]],{n,2,100}]
  • PARI
    gcd_of_multiplicities(lista) = { my(u=length(lista)); if(u<2, u, my(g=0, pe = lista[1], j=1); for(i=2,u,if(lista[i]==pe, j++, g = gcd(j,g); j=1; pe = lista[i])); gcd(g,j)); }; \\ the supplied lista (newfacs) should be monotonic
    A303553(n, m=n, facs=List([])) = if(1==n, (gcd_of_multiplicities(facs)!=1), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A303553(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Dec 06 2018

Formula

a(n) >= A303709(n). - Antti Karttunen, Dec 06 2018

Extensions

a(1) = 1 prepended by Antti Karttunen, Dec 06 2018

A304648 Number of different periodic multisets that fit within some normal multiset of weight n.

Original entry on oeis.org

0, 1, 3, 7, 13, 25, 44, 78, 136, 242, 422, 747, 1314, 2326, 4121, 7338, 13052, 23288, 41568, 74329, 133011, 238338, 427278, 766652, 1376258, 2472012, 4441916, 7984990, 14358424, 25826779, 46465956, 83616962, 150497816, 270917035, 487753034, 878244512
Offset: 1

Views

Author

Gus Wiseman, May 15 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers. It is periodic if its multiplicities have a common divisor greater than 1.

Examples

			The a(5) = 13 periodic multisets:
(11), (22), (33), (44),
(111), (222), (333),
(1111), (1122), (1133), (2222), (2233),
(11111).
		

Crossrefs

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Length[Select[Union@@Rest/@Subsets/@allnorm[n],GCD@@Length/@Split[#]>1&]],{n,10}]
  • PARI
    seq(n)=Vec(sum(d=2, n, -moebius(d)*x^d/(1 - x - x^d*(2-x)) + O(x*x^n))/(1-x), -n) \\ Andrew Howroyd, Feb 04 2021

Formula

From Andrew Howroyd, Feb 04 2021: (Start)
a(n) = A027941(n) - A303976(n).
G.f.: Sum_{d>=2} -mu(d)*x^d/((1 - x - x^d*(2-x))*(1-x)).
(End)

Extensions

a(12)-a(13) from Robert Price, Sep 15 2018
Terms a(14) and beyond from Andrew Howroyd, Feb 04 2021
Showing 1-7 of 7 results.