cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A303707 Number of factorizations of n using elements of A007916 (numbers that are not perfect powers).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 5, 1, 1, 2, 2, 2, 5, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 9, 1, 2, 3, 1, 2, 5, 1, 3, 2, 5, 1, 8, 1, 2, 3, 3, 2, 5, 1, 5, 1, 2, 1, 9, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 29 2018

Keywords

Comments

First differs from A081707 at a(60) = 9, A081707(60) = 8.

Examples

			The a(60) = 9 factorizations are (2*2*3*5), (2*2*15), (2*3*10), (2*5*6), (2*30), (3*20), (5*12), (6*10), (60).
		

Crossrefs

Programs

  • Mathematica
    radQ[n_]:=Or[n===1,GCD@@FactorInteger[n][[All,2]]===1];
    facsr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsr[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],radQ]}]];
    Table[Length[facsr[n]],{n,100}]

Formula

Dirichlet g.f.: Product_{n in A007916} 1/(1 - n^s).

A320813 Number of non-isomorphic multiset partitions of an aperiodic multiset of weight n such that there are no singletons and all parts are themselves aperiodic multisets.

Original entry on oeis.org

1, 0, 1, 2, 5, 13, 33, 104, 293, 938, 2892
Offset: 0

Views

Author

Gus Wiseman, Nov 08 2018

Keywords

Comments

Also the number of nonnegative integer matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, in which (1) the row sums are all > 1, (2) the positive entries in each row are relatively prime, and (3) the column-sums are relatively prime.
A multiset is aperiodic if its multiplicities are relatively prime.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 13 multiset partitions:
  {{1,2}}  {{1,2,2}}  {{1,2,2,2}}    {{1,1,2,2,2}}
           {{1,2,3}}  {{1,2,3,3}}    {{1,2,2,2,2}}
                      {{1,2,3,4}}    {{1,2,2,3,3}}
                      {{1,2},{3,4}}  {{1,2,3,3,3}}
                      {{1,3},{2,3}}  {{1,2,3,4,4}}
                                     {{1,2,3,4,5}}
                                     {{1,2},{1,2,2}}
                                     {{1,2},{2,3,3}}
                                     {{1,2},{3,4,4}}
                                     {{1,2},{3,4,5}}
                                     {{1,3},{2,3,3}}
                                     {{1,4},{2,3,4}}
                                     {{2,3},{1,2,3}}
		

Crossrefs

This is the case of A320804 where the underlying multiset is aperiodic.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    aperQ[m_]:=Length[m]==0||GCD@@Length/@Split[Sort[m]]==1;
    Table[Length[Union[brute /@ Select[mpm[n],And[Min@@Length/@#>1,aperQ[Join@@#]&&And@@aperQ /@ #]&]]],{n,0,7}] (* Gus Wiseman, Jan 19 2024 *)

Extensions

Definition corrected by Gus Wiseman, Jan 19 2024

A303709 Number of periodic factorizations of n using elements of A007916 (numbers that are not perfect powers).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Apr 29 2018

Keywords

Comments

A periodic factorization of n is a finite multiset of positive integers greater than 1 whose product is n and whose multiplicities have a common divisor greater than 1. Note that a factorization of a number that is not a perfect power (A007916) is always aperiodic (A303386), so the indices of nonzero entries of this sequence all lie at perfect powers (A001597).

Examples

			The a(900) = 5 periodic factorizations are (2*2*3*3*5*5), (2*2*15*15), (3*3*10*10), (5*5*6*6), (30*30).
		

Crossrefs

Programs

  • Mathematica
    radQ[n_]:=Or[n===1,GCD@@FactorInteger[n][[All,2]]===1];
    facsr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsr[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],radQ]}]];
    Table[Length[Select[facsr[n],GCD@@Length/@Split[#]!=1&]],{n,200}]
  • PARI
    gcd_of_multiplicities(lista) = { my(u=length(lista)); if(u<2, u, my(g=0, pe = lista[1], j=1); for(i=2,u,if(lista[i]==pe, j++, g = gcd(j,g); j=1; pe = lista[i])); gcd(g,j)); }; \\ the supplied lista (newfacs) should be monotonic
    A303709(n, m=n, facs=List([])) = if(1==n, (1!=gcd_of_multiplicities(facs)), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m)&&!ispower(d), newfacs = List(facs); listput(newfacs,d); s += A303709(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Dec 06 2018

Formula

a(n) <= A303553(n) <= A001055(n). - Antti Karttunen, Dec 06 2018

Extensions

Changed a(1) to 1 by Gus Wiseman, Dec 06 2018

A320804 Number of non-isomorphic multiset partitions of weight n with no singletons in which all parts are aperiodic multisets.

Original entry on oeis.org

1, 0, 1, 2, 6, 13, 41, 104, 326, 958, 3096, 9958, 33869, 116806, 417741, 1526499, 5732931, 22015642, 86543717, 347495480, 1424832602, 5959123908, 25407212843, 110344848622, 487879651220, 2194697288628, 10039367091586, 46675057440634, 220447539120814
Offset: 0

Views

Author

Gus Wiseman, Nov 06 2018

Keywords

Comments

Also the number of nonnegative integer matrices with (1) sum of elements equal to n, (2) no zero columns, (3) no rows summing to 0 or 1, and (4) no rows whose nonzero entries have a common divisor > 1, up to row and column permutations.
A multiset is aperiodic if its multiplicities are relatively prime.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 13 multiset partitions with aperiodic parts and no singletons:
  {{1,2}}  {{1,2,2}}  {{1,2,2,2}}    {{1,1,2,2,2}}
           {{1,2,3}}  {{1,2,3,3}}    {{1,2,2,2,2}}
                      {{1,2,3,4}}    {{1,2,2,3,3}}
                      {{1,2},{1,2}}  {{1,2,3,3,3}}
                      {{1,2},{3,4}}  {{1,2,3,4,4}}
                      {{1,3},{2,3}}  {{1,2,3,4,5}}
                                     {{1,2},{1,2,2}}
                                     {{1,2},{2,3,3}}
                                     {{1,2},{3,4,4}}
                                     {{1,2},{3,4,5}}
                                     {{1,3},{2,3,3}}
                                     {{1,4},{2,3,4}}
                                     {{2,3},{1,2,3}}
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))}
    S(q, t, k)={Vec(sum(j=1, #q, if(t%q[j]==0, q[j]*x^t))  + O(x*x^k), -k)}
    a(n)={if(n==0, 1, my(mbt=vector(n, d, moebius(d)), s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(dirmul(mbt, sum(t=1, n, K(q, t, n)/t)) - sum(t=1, n, S(q, t, n)/t) )), n)); s/n!)} \\ Andrew Howroyd, Jan 16 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 16 2023

A303710 Number of factorizations of numbers that are not perfect powers using only numbers that are not perfect powers.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 2, 3, 1, 5, 1, 2, 2, 2, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 5, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 9, 1, 2, 3, 2, 5, 1, 3, 2, 5, 1, 8, 1, 2, 3, 3, 2, 5, 1, 5, 2, 1, 9, 2, 2, 2, 4, 1, 9, 2, 3, 2, 2, 2, 6, 1, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 29 2018

Keywords

Comments

Note that a factorization of a number that is not a perfect power (A007916) is always itself aperiodic, meaning the multiplicities of its factors are relatively prime.

Examples

			The a(19) = 4 factorizations of 24 are (2*2*2*3), (2*2*6), (2*12), (24).
The a(23) = 5 factorizations of 30 are (2*3*5), (2*15), (3*10), (5*6), (30).
		

Crossrefs

Programs

  • Mathematica
    radQ[n_] := And[n > 1, GCD@@FactorInteger[n][[All, 2]] === 1]; facsr[n_] := If[n <= 1, {{}}, Join@@Table[Map[Prepend[#, d] &, Select[facsr[n/d], Min@@# >= d &]], {d, Select[Divisors[n], radQ]}]]; Table[Length[facsr[n]], {n, Select[Range[100], radQ]}]

A320806 Number of non-isomorphic multiset partitions of weight n in which each of the parts and each part of the dual, as well as both the multiset union of the parts and the multiset union of the dual parts, is an aperiodic multiset.

Original entry on oeis.org

1, 1, 1, 4, 10, 39, 81, 343, 903, 3223, 9989
Offset: 0

Views

Author

Gus Wiseman, Nov 07 2018

Keywords

Comments

Also the number of nonnegative integer matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, in which (1) the positive entries in each row and column are relatively prime and (2) the row sums and column sums are relatively prime.
The last condition (aperiodicity of the multiset union of the dual) is equivalent to the parts having relatively prime sizes.
A multiset is aperiodic if its multiplicities are relatively prime.
The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 10 multiset partitions:
  {{1}}  {{1},{2}}  {{1},{2,3}}    {{1},{2,3,4}}
                    {{2},{1,2}}    {{2},{1,2,2}}
                    {{1},{2},{2}}  {{3},{1,2,3}}
                    {{1},{2},{3}}  {{1},{1},{2,3}}
                                   {{1},{2},{3,4}}
                                   {{1},{3},{2,3}}
                                   {{2},{2},{1,2}}
                                   {{1},{2},{2},{2}}
                                   {{1},{2},{3},{3}}
                                   {{1},{2},{3},{4}}
		

Crossrefs

A320811 Number of non-isomorphic multiset partitions with no singletons of aperiodic multisets of size n.

Original entry on oeis.org

1, 0, 1, 2, 7, 21, 57, 200, 575, 1898, 5893
Offset: 0

Views

Author

Gus Wiseman, Nov 08 2018

Keywords

Comments

Also the number of nonnegative integer matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, in which (1) the row sums are all > 1 and (2) the column sums are relatively prime.
A multiset is aperiodic if its multiplicities are relatively prime.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 21 multiset partitions:
  {{1,2}}  {{1,2,2}}  {{1,2,2,2}}    {{1,1,2,2,2}}
           {{1,2,3}}  {{1,2,3,3}}    {{1,2,2,2,2}}
                      {{1,2,3,4}}    {{1,2,2,3,3}}
                      {{1,2},{2,2}}  {{1,2,3,3,3}}
                      {{1,2},{3,3}}  {{1,2,3,4,4}}
                      {{1,2},{3,4}}  {{1,2,3,4,5}}
                      {{1,3},{2,3}}  {{1,1},{1,2,2}}
                                     {{1,1},{2,2,2}}
                                     {{1,1},{2,3,3}}
                                     {{1,1},{2,3,4}}
                                     {{1,2},{1,2,2}}
                                     {{1,2},{2,2,2}}
                                     {{1,2},{2,3,3}}
                                     {{1,2},{3,3,3}}
                                     {{1,2},{3,4,4}}
                                     {{1,2},{3,4,5}}
                                     {{1,3},{2,3,3}}
                                     {{1,4},{2,3,4}}
                                     {{2,2},{1,2,2}}
                                     {{2,3},{1,2,3}}
                                     {{3,3},{1,2,3}}
		

Crossrefs

A320812 Number of non-isomorphic aperiodic multiset partitions of weight n with no singletons.

Original entry on oeis.org

1, 0, 2, 3, 10, 23, 79, 204, 670, 1974, 6521, 21003, 71944, 248055, 888565, 3240552, 12152093, 46527471, 182337383, 729405164, 2979114723, 12407307929, 52670334237, 227725915268, 1002285201807, 4487915293675, 20434064047098, 94559526594316, 444527729321513
Offset: 0

Views

Author

Gus Wiseman, Nov 08 2018

Keywords

Comments

A multiset is aperiodic if its multiplicities are relatively prime.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 2 through a(5) = 23 multiset partitions:
  {{1,1}}  {{1,1,1}}  {{1,1,1,1}}    {{1,1,1,1,1}}
  {{1,2}}  {{1,2,2}}  {{1,1,2,2}}    {{1,1,2,2,2}}
           {{1,2,3}}  {{1,2,2,2}}    {{1,2,2,2,2}}
                      {{1,2,3,3}}    {{1,2,2,3,3}}
                      {{1,2,3,4}}    {{1,2,3,3,3}}
                      {{1,1},{2,2}}  {{1,2,3,4,4}}
                      {{1,2},{2,2}}  {{1,2,3,4,5}}
                      {{1,2},{3,3}}  {{1,1},{1,1,1}}
                      {{1,2},{3,4}}  {{1,1},{1,2,2}}
                      {{1,3},{2,3}}  {{1,1},{2,2,2}}
                                     {{1,1},{2,3,3}}
                                     {{1,1},{2,3,4}}
                                     {{1,2},{1,2,2}}
                                     {{1,2},{2,2,2}}
                                     {{1,2},{2,3,3}}
                                     {{1,2},{3,3,3}}
                                     {{1,2},{3,4,4}}
                                     {{1,2},{3,4,5}}
                                     {{1,3},{2,3,3}}
                                     {{1,4},{2,3,4}}
                                     {{2,2},{1,2,2}}
                                     {{2,3},{1,2,3}}
                                     {{3,3},{1,2,3}}
		

Crossrefs

Formula

a(n) = Sum_{d|n} mu(d)*A302545(n/d) for n > 0. - Andrew Howroyd, Jan 16 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 16 2023

A320803 Number of non-isomorphic multiset partitions of weight n in which all parts are aperiodic multisets.

Original entry on oeis.org

1, 1, 3, 7, 21, 56, 174, 517, 1664, 5383, 18199, 62745, 223390, 813425, 3040181, 11620969, 45446484, 181537904, 740369798, 3079779662, 13059203150, 56406416004, 248027678362, 1109626606188, 5048119061134, 23342088591797, 109648937760252, 523036690273237
Offset: 0

Views

Author

Gus Wiseman, Nov 06 2018

Keywords

Comments

A multiset is aperiodic if its multiplicities are relatively prime.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 21 multiset partitions with aperiodic parts:
  {{1}}  {{1,2}}    {{1,2,2}}      {{1,2,2,2}}
         {{1},{1}}  {{1,2,3}}      {{1,2,3,3}}
         {{1},{2}}  {{1},{2,3}}    {{1,2,3,4}}
                    {{2},{1,2}}    {{1},{1,2,2}}
                    {{1},{1},{1}}  {{1,2},{1,2}}
                    {{1},{2},{2}}  {{1},{2,3,3}}
                    {{1},{2},{3}}  {{1},{2,3,4}}
                                   {{1,2},{3,4}}
                                   {{1,3},{2,3}}
                                   {{2},{1,2,2}}
                                   {{3},{1,2,3}}
                                   {{1},{1},{2,3}}
                                   {{1},{2},{1,2}}
                                   {{1},{2},{3,4}}
                                   {{1},{3},{2,3}}
                                   {{2},{2},{1,2}}
                                   {{1},{1},{1},{1}}
                                   {{1},{1},{2},{2}}
                                   {{1},{2},{2},{2}}
                                   {{1},{2},{3},{3}}
                                   {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))}
    a(n)={if(n==0, 1, my(mbt=vector(n, d, moebius(d)), s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(dirmul(mbt, sum(t=1, n, K(q, t, n)/t)))), n)); s/n!)} \\ Andrew Howroyd, Jan 16 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 16 2023

A320809 Number of non-isomorphic multiset partitions of weight n in which each part and each part of the dual, as well as the multiset union of the parts, is an aperiodic multiset.

Original entry on oeis.org

1, 1, 2, 5, 13, 40, 99, 344, 985, 3302, 10583
Offset: 0

Views

Author

Gus Wiseman, Nov 07 2018

Keywords

Comments

Also the number of nonnegative integer matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, in which (1) the positive entries in each row and column are relatively prime and (2) the column sums are relatively prime.
The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
A multiset is aperiodic if its multiplicities are relatively prime.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 13 multiset partitions:
  {{1}}  {{1,2}}    {{1,2,3}}      {{1,2,3,4}}
         {{1},{2}}  {{1},{2,3}}    {{1},{2,3,4}}
                    {{2},{1,2}}    {{1,2},{3,4}}
                    {{1},{2},{2}}  {{1,3},{2,3}}
                    {{1},{2},{3}}  {{2},{1,2,2}}
                                   {{3},{1,2,3}}
                                   {{1},{1},{2,3}}
                                   {{1},{2},{3,4}}
                                   {{1},{3},{2,3}}
                                   {{2},{2},{1,2}}
                                   {{1},{2},{2},{2}}
                                   {{1},{2},{3},{3}}
                                   {{1},{2},{3},{4}}
		

Crossrefs

Showing 1-10 of 12 results. Next