cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A320797 Number of non-isomorphic self-dual multiset partitions of weight n with no singletons.

Original entry on oeis.org

1, 0, 1, 1, 3, 4, 9, 15, 33, 60, 121
Offset: 0

Views

Author

Gus Wiseman, Nov 02 2018

Keywords

Comments

Also the number of nonnegative integer square symmetric matrices with sum of elements equal to n and no rows or columns summing to 0 or 1, up to row and column permutations.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(7) = 15 multiset partitions:
  {{11}}  {{111}}  {{1111}}    {{11111}}    {{111111}}      {{1111111}}
                   {{11}{22}}  {{11}{122}}  {{111}{222}}    {{111}{1222}}
                   {{12}{12}}  {{11}{222}}  {{112}{122}}    {{111}{2222}}
                               {{12}{122}}  {{11}{2222}}    {{112}{1222}}
                                            {{12}{1222}}    {{11}{22222}}
                                            {{22}{1122}}    {{12}{12222}}
                                            {{11}{22}{33}}  {{122}{1122}}
                                            {{11}{23}{23}}  {{22}{11222}}
                                            {{12}{13}{23}}  {{11}{12}{233}}
                                                            {{11}{22}{233}}
                                                            {{11}{22}{333}}
                                                            {{11}{23}{233}}
                                                            {{12}{12}{333}}
                                                            {{12}{13}{233}}
                                                            {{13}{23}{123}}
Inequivalent representatives of the a(6) = 9 symmetric matrices with no rows or columns summing to 1:
  [6]
.
  [3 0]  [2 1]  [4 0]  [3 1]  [2 2]
  [0 3]  [1 2]  [0 2]  [1 1]  [2 0]
.
  [2 0 0]  [2 0 0]  [1 1 0]
  [0 2 0]  [0 1 1]  [1 0 1]
  [0 0 2]  [0 1 1]  [0 1 1]
		

Crossrefs

A320813 Number of non-isomorphic multiset partitions of an aperiodic multiset of weight n such that there are no singletons and all parts are themselves aperiodic multisets.

Original entry on oeis.org

1, 0, 1, 2, 5, 13, 33, 104, 293, 938, 2892
Offset: 0

Views

Author

Gus Wiseman, Nov 08 2018

Keywords

Comments

Also the number of nonnegative integer matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, in which (1) the row sums are all > 1, (2) the positive entries in each row are relatively prime, and (3) the column-sums are relatively prime.
A multiset is aperiodic if its multiplicities are relatively prime.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 13 multiset partitions:
  {{1,2}}  {{1,2,2}}  {{1,2,2,2}}    {{1,1,2,2,2}}
           {{1,2,3}}  {{1,2,3,3}}    {{1,2,2,2,2}}
                      {{1,2,3,4}}    {{1,2,2,3,3}}
                      {{1,2},{3,4}}  {{1,2,3,3,3}}
                      {{1,3},{2,3}}  {{1,2,3,4,4}}
                                     {{1,2,3,4,5}}
                                     {{1,2},{1,2,2}}
                                     {{1,2},{2,3,3}}
                                     {{1,2},{3,4,4}}
                                     {{1,2},{3,4,5}}
                                     {{1,3},{2,3,3}}
                                     {{1,4},{2,3,4}}
                                     {{2,3},{1,2,3}}
		

Crossrefs

This is the case of A320804 where the underlying multiset is aperiodic.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    aperQ[m_]:=Length[m]==0||GCD@@Length/@Split[Sort[m]]==1;
    Table[Length[Union[brute /@ Select[mpm[n],And[Min@@Length/@#>1,aperQ[Join@@#]&&And@@aperQ /@ #]&]]],{n,0,7}] (* Gus Wiseman, Jan 19 2024 *)

Extensions

Definition corrected by Gus Wiseman, Jan 19 2024

A320799 Number of non-isomorphic (not necessarily strict) antichains of multisets of weight n with no singletons or leaves (vertices that appear only once).

Original entry on oeis.org

1, 0, 1, 1, 5, 4, 22, 27, 107, 212, 689
Offset: 0

Views

Author

Gus Wiseman, Nov 02 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(7) = 27 multiset partitions:
  {{11}}  {{111}}  {{1111}}    {{11111}}    {{111111}}      {{1111111}}
                   {{1122}}    {{11222}}    {{111222}}      {{1112222}}
                   {{11}{11}}  {{11}{122}}  {{112222}}      {{1122222}}
                   {{11}{22}}  {{11}{222}}  {{112233}}      {{1122333}}
                   {{12}{12}}               {{111}{111}}    {{111}{1222}}
                                            {{11}{1222}}    {{11}{12222}}
                                            {{111}{222}}    {{111}{2222}}
                                            {{112}{122}}    {{11}{12233}}
                                            {{11}{2222}}    {{111}{2233}}
                                            {{112}{222}}    {{112}{1222}}
                                            {{11}{2233}}    {{11}{22222}}
                                            {{112}{233}}    {{112}{2222}}
                                            {{122}{122}}    {{11}{22333}}
                                            {{123}{123}}    {{112}{2333}}
                                            {{11}{11}{11}}  {{113}{2233}}
                                            {{11}{12}{22}}  {{122}{1233}}
                                            {{11}{22}{22}}  {{222}{1122}}
                                            {{11}{22}{33}}  {{11}{11}{122}}
                                            {{11}{23}{23}}  {{11}{11}{222}}
                                            {{12}{12}{12}}  {{11}{12}{222}}
                                            {{12}{12}{22}}  {{11}{12}{233}}
                                            {{12}{13}{23}}  {{11}{22}{233}}
                                                            {{11}{22}{333}}
                                                            {{12}{12}{222}}
                                                            {{12}{12}{233}}
                                                            {{12}{12}{333}}
                                                            {{12}{13}{233}}
		

Crossrefs

A321408 Number of non-isomorphic self-dual multiset partitions of weight n whose parts are aperiodic.

Original entry on oeis.org

1, 1, 1, 2, 5, 9, 18, 35, 75, 153, 318
Offset: 0

Views

Author

Gus Wiseman, Nov 16 2018

Keywords

Comments

A multiset is aperiodic if its multiplicities are relatively prime.
Also the number of nonnegative integer symmetric matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, in which no row or column has a common divisor > 1.
The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(6) = 18 multiset partitions:
  {1}  {1}{2}  {2}{12}    {12}{12}      {12}{122}        {112}{122}
               {1}{2}{3}  {2}{122}      {2}{1222}        {12}{1222}
                          {1}{1}{23}    {1}{23}{23}      {2}{12222}
                          {1}{3}{23}    {1}{3}{233}      {12}{13}{23}
                          {1}{2}{3}{4}  {2}{13}{23}      {1}{23}{233}
                                        {3}{3}{123}      {1}{3}{2333}
                                        {1}{2}{2}{34}    {2}{13}{233}
                                        {1}{2}{4}{34}    {3}{23}{123}
                                        {1}{2}{3}{4}{5}  {3}{3}{1233}
                                                         {1}{1}{1}{234}
                                                         {1}{2}{34}{34}
                                                         {1}{2}{4}{344}
                                                         {1}{3}{24}{34}
                                                         {1}{4}{4}{234}
                                                         {2}{4}{12}{34}
                                                         {1}{2}{3}{3}{45}
                                                         {1}{2}{3}{5}{45}
                                                         {1}{2}{3}{4}{5}{6}
		

Crossrefs

A321402 Number of non-isomorphic strict self-dual multiset partitions of weight n with no singletons.

Original entry on oeis.org

1, 0, 1, 1, 2, 4, 8, 14, 27, 53, 105
Offset: 0

Views

Author

Gus Wiseman, Nov 09 2018

Keywords

Comments

Also the number of nonnegative integer symmetric matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, in which the rows are all different and none sums to 1.
The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(7) = 14 multiset partitions:
  {{11}}  {{111}}  {{1111}}    {{11111}}    {{111111}}      {{1111111}}
                   {{11}{22}}  {{11}{122}}  {{111}{222}}    {{111}{1222}}
                               {{11}{222}}  {{112}{122}}    {{111}{2222}}
                               {{12}{122}}  {{11}{2222}}    {{112}{1222}}
                                            {{12}{1222}}    {{11}{22222}}
                                            {{22}{1122}}    {{12}{12222}}
                                            {{11}{22}{33}}  {{122}{1122}}
                                            {{12}{13}{23}}  {{22}{11222}}
                                                            {{11}{12}{233}}
                                                            {{11}{22}{233}}
                                                            {{11}{22}{333}}
                                                            {{11}{23}{233}}
                                                            {{12}{13}{233}}
                                                            {{13}{23}{123}}
		

Crossrefs

A321677 Number of non-isomorphic set multipartitions (multisets of sets) of weight n with no singletons.

Original entry on oeis.org

1, 0, 1, 1, 4, 4, 16, 22, 70, 132, 375, 848, 2428, 6256, 18333, 52560, 161436, 500887, 1624969, 5384625, 18438815, 64674095, 233062429, 859831186, 3248411250, 12545820860, 49508089411, 199410275018, 819269777688, 3430680180687, 14633035575435, 63535672197070
Offset: 0

Views

Author

Gus Wiseman, Nov 16 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(6) = 16 set multipartitions:
  {{1,2}}  {{1,2,3}}  {{1,2,3,4}}    {{1,2,3,4,5}}    {{1,2,3,4,5,6}}
                      {{1,2},{1,2}}  {{1,2},{3,4,5}}  {{1,2,3},{1,2,3}}
                      {{1,2},{3,4}}  {{1,4},{2,3,4}}  {{1,2},{3,4,5,6}}
                      {{1,3},{2,3}}  {{2,3},{1,2,3}}  {{1,2,3},{4,5,6}}
                                                      {{1,2,5},{3,4,5}}
                                                      {{1,3,4},{2,3,4}}
                                                      {{1,5},{2,3,4,5}}
                                                      {{3,4},{1,2,3,4}}
                                                      {{1,2},{1,2},{1,2}}
                                                      {{1,2},{1,3},{2,3}}
                                                      {{1,2},{3,4},{3,4}}
                                                      {{1,2},{3,4},{5,6}}
                                                      {{1,2},{3,5},{4,5}}
                                                      {{1,3},{2,3},{2,3}}
                                                      {{1,3},{2,4},{3,4}}
                                                      {{1,4},{2,4},{3,4}}
		

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k)) - Vec(sum(j=1, #q, if(t%q[j]==0, q[j])) + O(x*x^k), -k)}
    a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(g=sum(t=1, n, subst(x*Ser(K(q, t, n\t)/t),x,x^t) )); s+=permcount(q)*polcoef(exp(g), n)); s/n!)} \\ Andrew Howroyd, Jan 16 2024

Extensions

Terms a(11) and beyond from Andrew Howroyd, Sep 01 2019
Showing 1-6 of 6 results.