cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A303707 Number of factorizations of n using elements of A007916 (numbers that are not perfect powers).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 5, 1, 1, 2, 2, 2, 5, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 9, 1, 2, 3, 1, 2, 5, 1, 3, 2, 5, 1, 8, 1, 2, 3, 3, 2, 5, 1, 5, 1, 2, 1, 9, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 29 2018

Keywords

Comments

First differs from A081707 at a(60) = 9, A081707(60) = 8.

Examples

			The a(60) = 9 factorizations are (2*2*3*5), (2*2*15), (2*3*10), (2*5*6), (2*30), (3*20), (5*12), (6*10), (60).
		

Crossrefs

Programs

  • Mathematica
    radQ[n_]:=Or[n===1,GCD@@FactorInteger[n][[All,2]]===1];
    facsr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsr[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],radQ]}]];
    Table[Length[facsr[n]],{n,100}]

Formula

Dirichlet g.f.: Product_{n in A007916} 1/(1 - n^s).

A294068 Number of factorizations of n using perfect powers (elements of A001597) other than 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 1

Views

Author

Gus Wiseman, May 05 2018

Keywords

Examples

			The a(1152) = 7 factorizations are (4*4*8*9), (4*8*36), (4*9*32), (8*9*16), (8*144), (9*128), (32*36).
		

Crossrefs

Programs

  • Maple
    ispp:= proc(n) local F;
      F:= ifactors(n)[2];
      igcd(op(map(t -> t[2],F)))>1
    end proc:
    f:= proc(n) local F, np, Q;
      F:= map(t -> t[2], ifactors(n)[2]);
      np:= mul(ithprime(i)^F[i],i=1..nops(F));
      Q:= select(ispp, numtheory:-divisors(np));
      G(Q,np)
    end proc:
    G:= proc(Q,n) option remember; local q,t,k;
        if not numtheory:-factorset(n) subset `union`(seq(numtheory:-factorset(q),q=Q)) then return 0 fi;
        q:= Q[1]; t:= 0;
        for k from 0 while n mod q^k = 0 do
          t:= t + procname(Q[2..-1],n/q^k)
        od;
        t
    end proc:
    G({},1):= 1:
    map(f, [$1..200]); # Robert Israel, May 06 2018
  • Mathematica
    ppQ[n_]:=And[n>1,GCD@@FactorInteger[n][[All,2]]>1];
    facsp[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsp[n/d],Min@@#>=d&]],{d,Select[Divisors[n],ppQ]}]];
    Table[Length[facsp[n]],{n,100}]

A303708 Number of aperiodic factorizations of n using elements of A007916 (numbers that are not perfect powers).

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 3, 1, 2, 2, 0, 1, 3, 1, 3, 2, 2, 1, 4, 0, 2, 0, 3, 1, 5, 1, 0, 2, 2, 2, 3, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 5, 0, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 9, 1, 2, 3, 0, 2, 5, 1, 3, 2, 5, 1, 8, 1, 2, 3, 3, 2, 5, 1, 5, 0, 2, 1, 9, 2, 2, 2, 4, 1, 9, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 29 2018

Keywords

Comments

An aperiodic factorization of n is a finite multiset of positive integers greater than 1 whose product is n and whose multiplicities are relatively prime.
The positions of zeros in this sequence are the prime powers A000961.

Examples

			The a(144) = 8 aperiodic factorizations are (2*2*2*3*6), (2*2*2*18), (2*2*3*12), (2*3*24), (2*6*12), (2*72), (3*48) and (6*24). Missing from this list are (12*12), (2*2*6*6) and (2*2*2*2*3*3).
		

Crossrefs

Programs

  • Mathematica
    radQ[n_]:=Or[n===1,GCD@@FactorInteger[n][[All,2]]===1];
    facsr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsr[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],radQ]}]];
    Table[Length[Select[facsr[n],GCD@@Length/@Split[#]===1&]],{n,100}]

Formula

a(n) = Sum_{d in A007916, d|A052409(n)} mu(d) * A303707(n^(1/d)).

A303709 Number of periodic factorizations of n using elements of A007916 (numbers that are not perfect powers).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Apr 29 2018

Keywords

Comments

A periodic factorization of n is a finite multiset of positive integers greater than 1 whose product is n and whose multiplicities have a common divisor greater than 1. Note that a factorization of a number that is not a perfect power (A007916) is always aperiodic (A303386), so the indices of nonzero entries of this sequence all lie at perfect powers (A001597).

Examples

			The a(900) = 5 periodic factorizations are (2*2*3*3*5*5), (2*2*15*15), (3*3*10*10), (5*5*6*6), (30*30).
		

Crossrefs

Programs

  • Mathematica
    radQ[n_]:=Or[n===1,GCD@@FactorInteger[n][[All,2]]===1];
    facsr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsr[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],radQ]}]];
    Table[Length[Select[facsr[n],GCD@@Length/@Split[#]!=1&]],{n,200}]
  • PARI
    gcd_of_multiplicities(lista) = { my(u=length(lista)); if(u<2, u, my(g=0, pe = lista[1], j=1); for(i=2,u,if(lista[i]==pe, j++, g = gcd(j,g); j=1; pe = lista[i])); gcd(g,j)); }; \\ the supplied lista (newfacs) should be monotonic
    A303709(n, m=n, facs=List([])) = if(1==n, (1!=gcd_of_multiplicities(facs)), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m)&&!ispower(d), newfacs = List(facs); listput(newfacs,d); s += A303709(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Dec 06 2018

Formula

a(n) <= A303553(n) <= A001055(n). - Antti Karttunen, Dec 06 2018

Extensions

Changed a(1) to 1 by Gus Wiseman, Dec 06 2018

A320803 Number of non-isomorphic multiset partitions of weight n in which all parts are aperiodic multisets.

Original entry on oeis.org

1, 1, 3, 7, 21, 56, 174, 517, 1664, 5383, 18199, 62745, 223390, 813425, 3040181, 11620969, 45446484, 181537904, 740369798, 3079779662, 13059203150, 56406416004, 248027678362, 1109626606188, 5048119061134, 23342088591797, 109648937760252, 523036690273237
Offset: 0

Views

Author

Gus Wiseman, Nov 06 2018

Keywords

Comments

A multiset is aperiodic if its multiplicities are relatively prime.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 21 multiset partitions with aperiodic parts:
  {{1}}  {{1,2}}    {{1,2,2}}      {{1,2,2,2}}
         {{1},{1}}  {{1,2,3}}      {{1,2,3,3}}
         {{1},{2}}  {{1},{2,3}}    {{1,2,3,4}}
                    {{2},{1,2}}    {{1},{1,2,2}}
                    {{1},{1},{1}}  {{1,2},{1,2}}
                    {{1},{2},{2}}  {{1},{2,3,3}}
                    {{1},{2},{3}}  {{1},{2,3,4}}
                                   {{1,2},{3,4}}
                                   {{1,3},{2,3}}
                                   {{2},{1,2,2}}
                                   {{3},{1,2,3}}
                                   {{1},{1},{2,3}}
                                   {{1},{2},{1,2}}
                                   {{1},{2},{3,4}}
                                   {{1},{3},{2,3}}
                                   {{2},{2},{1,2}}
                                   {{1},{1},{1},{1}}
                                   {{1},{1},{2},{2}}
                                   {{1},{2},{2},{2}}
                                   {{1},{2},{3},{3}}
                                   {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))}
    a(n)={if(n==0, 1, my(mbt=vector(n, d, moebius(d)), s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(dirmul(mbt, sum(t=1, n, K(q, t, n)/t)))), n)); s/n!)} \\ Andrew Howroyd, Jan 16 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 16 2023

A320805 Number of non-isomorphic multiset partitions of weight n in which each part, as well as the multiset union of the parts, is an aperiodic multiset.

Original entry on oeis.org

1, 1, 2, 6, 16, 55, 139, 516, 1500, 5269, 17017
Offset: 0

Views

Author

Gus Wiseman, Nov 07 2018

Keywords

Comments

Also the number of nonnegative integer matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, in which (1) the positive entries in each row are relatively prime and (2) the column sums are relatively prime.
A multiset is aperiodic if its multiplicities are relatively prime.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 16 multiset partitions:
  {{1}}  {{1,2}}    {{1,2,2}}      {{1,2,2,2}}
         {{1},{2}}  {{1,2,3}}      {{1,2,3,3}}
                    {{1},{2,3}}    {{1,2,3,4}}
                    {{2},{1,2}}    {{1},{2,3,3}}
                    {{1},{2},{2}}  {{1},{2,3,4}}
                    {{1},{2},{3}}  {{1,2},{3,4}}
                                   {{1,3},{2,3}}
                                   {{2},{1,2,2}}
                                   {{3},{1,2,3}}
                                   {{1},{1},{2,3}}
                                   {{1},{2},{3,4}}
                                   {{1},{3},{2,3}}
                                   {{2},{2},{1,2}}
                                   {{1},{2},{2},{2}}
                                   {{1},{2},{3},{3}}
                                   {{1},{2},{3},{4}}
		

Crossrefs

Showing 1-6 of 6 results.