A303731 Number of noncrossing path sets on n nodes up to rotation and reflection with each path having a prime number of nodes.
1, 0, 1, 1, 1, 5, 6, 27, 53, 140, 649, 1297, 6355, 18038, 63226, 241741, 744711, 3008107, 10028056, 37270169, 138083464, 488933323, 1872525356, 6763888465, 25498771059, 95467533318, 355595703773, 1353873044078, 5077809606803, 19345857682140, 73533468653115
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
Programs
-
PARI
\\ number of path sets with restricted path lengths NCPathSetsModDihedral(v)={ my(n=#v); my(p=serreverse(x/(1 + x*v[1] + sum(k=2, #v, (k*2^(k-3))*x^k*v[k])) + O(x^2*x^n) )/x); my(vars=variables(p)); my(h=substvec(p + O(x^(n\2+1)),vars,apply(t->t^2, vars))); my(q=x*deriv(p)/p); my(R=v[1]*x + sum(i=1, (#v-1)\2, v[2*i+1]*2^(i-1)*x*(x^2*h)^i), Q=sum(i=1, #v\2, v[2*i]*2^(i-1)*(x^2*h)^i), T=intformal((p - 1 + sum(d=2,n, eulerphi(d)*substvec(q + O(x^(n\d+1)), vars, apply(t->t^d, vars))))/x)); O(x*x^n) + (1 + T + (1 + Q + (1+R)^2*h/(1-Q) + v[2]*x^2*h)/2)/2; } Vec(NCPathSetsModDihedral(vector(30, k, isprime(k))))