cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A303732 Number of noncrossing path sets on n nodes up to rotation with each path having a prime number of nodes.

Original entry on oeis.org

1, 0, 1, 1, 1, 7, 8, 45, 96, 258, 1260, 2511, 12594, 35799, 126043, 482640, 1487929, 6012740, 20051360, 74529198, 276148256, 977824914, 3744986184, 13527623583, 50997301218, 190934525258, 711190503929, 2707743977818, 10155615925523, 38691707792278
Offset: 0

Views

Author

Andrew Howroyd, Apr 29 2018

Keywords

Crossrefs

Programs

  • PARI
    \\ number of path sets with restricted path lengths
    NCPathSetsModCyclic(v)={ my(n=#v);
    my(p=serreverse(x/(1 + x*v[1] + sum(k=2, #v, (k*2^(k-3))*x^k*v[k])) + O(x^2*x^n) )/x);
    my(vars=variables(p));
    my(h=substvec(p + O(x^(n\2+1)),vars,apply(t->t^2, vars)));
    my(q=x*deriv(p)/p);
    my(Q=sum(i=1, #v\2, v[2*i]*2^(i-1)*(x^2*h)^i));
    1 + Q/2 + intformal((p - 1 + sum(d=2, n, eulerphi(d)*substvec(q + O(x^(n\d+1)), vars, apply(t->t^d, vars))))/x)
    }
    Vec(NCPathSetsModCyclic(vector(30, k, isprime(k))))

A303839 Number of noncrossing path sets on n nodes up to rotation and reflection with each path having at least two nodes.

Original entry on oeis.org

1, 0, 1, 1, 3, 5, 17, 40, 138, 430, 1546, 5478, 20525, 77310, 298301, 1161692, 4583525, 18239037, 73221198, 296046399, 1205038270, 4933969005, 20311807087, 84029440358, 349201537324, 1457205298510, 6104204225832, 25661191956781, 108231773165825
Offset: 0

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Examples

			Case n=4: There are 3 possibilities:
.
   o---o   o   o   o---o
           |   |     /
   o---o   o---o   o---o
.
		

Crossrefs

Programs

  • PARI
    \\ See A303731 for NCPathSetsModDihedral
    Vec(NCPathSetsModDihedral(vector(30, k, k>1)))

A303729 Number of noncrossing path sets on n nodes with each path having a prime number of nodes.

Original entry on oeis.org

1, 0, 1, 3, 2, 35, 32, 315, 746, 2304, 12422, 27621, 150729, 465387, 1762427, 7239244, 23799382, 102216580, 360900542, 1416054762, 5522838696, 20534319262, 82389314900, 311135342409, 1223933415631, 4773363130810, 18490946264039, 73109087367264, 284357219601461
Offset: 0

Views

Author

Andrew Howroyd, Apr 29 2018

Keywords

Crossrefs

Programs

  • Mathematica
    seq[n_] := InverseSeries[x/(1 + Sum[If[PrimeQ[k], k*2^(k-3)*x^k, 0], {k, 2, n}]) + O[x]^(n+2), x]/x;
    CoefficientList[seq[28], x] (* Jean-François Alcover, May 15 2018, translated from PARI *)
  • PARI
    seq(n)={Vec(serreverse(x/(1 + sum(k=2, n, if(isprime(k), k*2^(k-3)*x^k))) + O(x^(n+2)) )/x)}

A303835 Number of noncrossing path sets on n nodes up to rotation and reflection with isolated vertices allowed.

Original entry on oeis.org

1, 1, 2, 3, 8, 19, 64, 212, 833, 3360, 14476, 63848, 289892, 1338000, 6275589, 29791100, 142973014, 692507861, 3382070233, 16638445745, 82395500651, 410463736691, 2055858519575, 10347925039015, 52321093290715, 265648012207312, 1353953547877556, 6925400869302520
Offset: 0

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Examples

			Case n=3: There are 3 possibilities:
.
     o        o       o
                     / \
   o   o    o---o   o   o
.
Case n=4: There are 8 possibilities:
.
   o   o    o   o    o   o    o   o    o   o    o---o    o   o    o---o
                       /      |          /               |   |      /
   o   o    o---o    o   o    o---o    o---o    o---o    o---o    o---o
.
		

Crossrefs

Programs

  • PARI
    \\ See A303731 for NCPathSetsModDihedral
    Vec(NCPathSetsModDihedral(vector(30, k, 1)))

A303868 Triangle read by rows: T(n,k) = number of noncrossing path sets on n nodes up to rotation and reflection with k paths and isolated vertices allowed.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 3, 7, 6, 2, 1, 6, 20, 23, 11, 3, 1, 10, 50, 80, 51, 17, 3, 1, 20, 136, 285, 252, 109, 26, 4, 1, 36, 346, 966, 1119, 652, 200, 36, 4, 1, 72, 901, 3188, 4782, 3623, 1502, 352, 50, 5, 1, 136, 2264, 10133, 19116, 18489, 9949, 3120, 570, 65, 5, 1
Offset: 1

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Examples

			Triangle begins:
   1;
   1,   1;
   1,   1,    1;
   2,   3,    2,    1;
   3,   7,    6,    2,    1;
   6,  20,   23,   11,    3,    1;
  10,  50,   80,   51,   17,    3,   1;
  20, 136,  285,  252,  109,   26,   4,  1;
  36, 346,  966, 1119,  652,  200,  36,  4, 1;
  72, 901, 3188, 4782, 3623, 1502, 352, 50, 5, 1;
  ...
		

Crossrefs

Row sums are A303835.
Column 1 is A005418(n-2).

Programs

  • PARI
    \\ See A303731 for NCPathSetsModDihedral
    { my(rows=Vec(NCPathSetsModDihedral(vector(10, k, y))-1));
      for(n=1, #rows, for(k=1, n, print1(polcoeff(rows[n],k), ", ")); print;) }
Showing 1-5 of 5 results.